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Abstract

The behavior of low-dimensional quantum spin systems is dominated by zero-point spin

fluctuation. As a consequence, they show a variety of interesting magnetic properties which

are not present in their classical counterparts. Interest in quantum spin systems has been

driven by the importance for understanding the mechanism of high-Tc superconductivity

and in recent years by its probable application in the field of quantum computation.

Quantum fluctuations prevent true long-range antiferromagnetic (AF) order for homo-

geneous 1-D spin systems. In these systems, spin-spin correlation decays slowly to zero as

power law. In 2-D spin systems, the Heisenberg model has a ground state with long-range

AF order. Neither system has a spin gap. The quantum fluctuation brings a dramatic effect

in behavior of compounds intermediate between 1-D and 2-D, i.e., quasi 1-D spin systems.

These systems may have a finite energy gap between singlet ground state (S=0) to triplet

excited state (S=1) like even-leg ladder compounds. In addition 1-D alternating chain

compounds, dimer compounds, spin-Peierls systems also show gap in their spin excitation

spectrum.

In the field of quantum spin systems, it is an usual practice to derive the theoretical

models by fitting the experimental results like susceptibility data. However, often such

fitting procedure which requires solution of the assumed spin Hamiltonian leads to ambiguity

in deciding the representative model. (VO)2P2O7 forms a classic example in this regard

which turned out to be an alternating chain compound while it was originally considered

to be an example of ladder compound. Therefore microscopic understanding is required for

the sake of uniqueness.

These compounds are often transition metal based systems like cuprates, vanadates, tel-

lurides etc. (both inorganic and organic systems). While density functional theory (DFT)

based local density approximation (LDA) calculations have been immensely successful in

providing the ground state properties of many of the systems, it is not possible to describe

the electronic structure and related properties of strongly correlated systems. Strong inter-

actions preclude the possibility of any effective single-particle description. The transitional

metal based quantum spin systems that we are interested in precisely falls in this category of

strongly correlated electron system. Hubbard, t-J or Heisenberg models play an important

role in understanding many of the interesting physics in correlated electrons. However, it

must be noted that depending on parameter values they can show vastly different properties.
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x Abstract

A model is therefore compound specific.

In this thesis, we aim on deriving model Hamiltonians out of full LDA-DFT calculations

considering a variety of systems belonging to the category of low-dimensional quantum spin

systems.
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1 Introduction

1.1 Background

The low-dimensional quantum spin systems (QSS) are structurally three dimensional. How-

ever due to the anisotropy in the interaction between magnetic ions, the interaction in

particular direction is very strong compared to the other directions. Effectively these spin

systems form a chain or layer structure. Therefore according to interaction these systems

may be effectively one dimensional (1-D) or two dimensional (2-D) or in between one and

two i.e., quasi one dimensional. Considering antiferromagnetic Heisenberg model, strict an-

tiferromagnetic alignment gains energy only from the Ising (or z-z) part of the Heisenberg

interaction (the energy value is –JS2, where J is the coupling strength and S is the spin).

In order to get the true ground state, one needs to let the spin z-components fluctuate

so that the system can gain energy also from spin flip (or x-y) terms (the extra energy

lowering is –JS). In contrast to the ferromagnetic ground state, the ground state of the

antiferromagnetic Heisenberg model shows quantum fluctuations. This can be measured by

the ratio of the quantum correction to the (classical) z-z energy: (–JS)/(–JS2)=1/S. For

two-site case, quantum effects are of the order ∼1/S. Going over to the lattice case, it can

be concluded that the relevant parameter is more like 1/(zS), where z is the coordination

number. Therefore quantum fluctuations are expected to be stronger for small spin and

low dimensional systems. As a result the behavior of low-dimensional QSS is dominated

by zero-point spin fluctuations. This gives rise to variety of interesting magnetic properties

which are not present in their classical counterparts.

The interest in QSS has been driven by the importance for understanding the mechanism

of high-TC superconductivity as well as for their potential applications in the field of quan-

tum computers. Synthesis of materials appropriate to various class within these systems

has made this field very attractive and site of many activities. It has been suggested that

spin ladders may exhibit superconductivity under doping [1]. Alternating Heisenberg anti-

ferromagnetic chains may exhibit a novel bound two magnon mode [2]. The wide variety

of behavior arises from very simple conceptual pictures, but is often driven by the quantum

nature of the interaction. In recent years, a great amount of effort, both theoretically and

experimentally, has been dedicated to the study of these quantum spin systems.
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6 Introduction

Bethe [3] showed that the quantum fluctuations prevent true long-range antiferromag-

netic (AFM) order for homogeneous 1-D spin systems. In these systems the spin-spin

correlation as a function of distance decays slowly to zero as power law. For 2-D spin sys-

tems, the Heisenberg model has a ground state with long-range AFM order only at T=0 K.

Neither system has a spin gap, i.e., there is no cost in energy to create an excitation with

S=1. The quantum fluctuation brings a dramatic effect in behavior of compounds inter-

mediate between 1-D and 2-D, i.e., quasi 1-D spin systems. These systems may have a

finite energy gap between singlet ground state (S=0) and triplet excited state (S=1). The

even-leg ladders [1], alternating Heisenberg antiferromagnetic chains [4], dimer systems [5],

spin-Peierls systems [6] show gap in their spin excitation spectrum. Haldane [4] conjectured

that a simple one dimensional magnetic chain would have a spin gap for all integer spins,

but would be gapless for half-integer spins, a conjecture that has been backed up with

considerable experimental evidence [7]. An analogous situation has been found to exist in

the quasi-one dimensional spin ladder configuration, in which ladders with an even number

of legs would exhibit an energy gap, but ladders with an odd number of legs would not [8].

1.2 Different classes of low-dimensional QSS

In the following we give example of different class of low dimensional QSS:

1.2.1 Dimer Compounds:

The dimer system is one in which only two sites are magnetically coupled, and are magnet-

ically isolated from rest of the sites. More complex systems can often be built up starting

with dimers, especially if the inter-dimer coupling is weak compared to the intra-dimer

coupling. A schematic diagram of spin dimer system is shown in Figure 1.1.

J J

d d

Figure 1.1: A dimer system consists of two spins of equal magnitude but opposite direction
separated by a distance d. The interaction strength is J .
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The Heisenberg Hamiltonian corresponding to antiferromagnetically coupled isotropic

dimer is given by

H = J
(

~S1 · ~S2

)

(1.1)

where J > 0 is the coupling strength and ~S1 and ~S2 are the spins of the two coupled

ions. With J > 0, the system has minimum energy when ~S1 and ~S2 are aligned in opposite

directions.

On the other hand the Hamiltonian corresponding to anisotropic dimer can be represented

by

H = J
[

Sz
1S

z
2 +

α

2

(

S+
1 S

−
2 + S−

1 S
+
2

)]

(1.2)

Here, again, J > 0 is the coupling strength, and ~S1 and ~S2 are the spins. Sz is the z

component of the spin, and S+ and S− are the spin raising and lowering operators respec-

tively. α is the spin anisotropy, where α=1 is identical with the isotropic case presented in

equation (1.1).

A quantum phase transition from a gapless critical state into a gaped state (disorder

spin liquid) is induced by dimerization [2]. With dimerization the spinons are confined

into massive triplet excitations. An excitation of strong dimerization corresponds to the

breaking of one dimer (see lower panel of Figure 1.1). The energy related to this process

is the singlet-triplet gap.

An example of the dimer system can be CaCuGe2O6. Susceptibility measurements on

CaCuGe2O6 show the existence of a spin-singlet ground state with finite energy gap [5]. The

spin gap in CaCuGe2O6 is intrinsic. Inelastic neutron scattering (INS) measurements were

carried out on CaCuGe2O6 powder and the existence of a finite spin gap was confirmed [9].

The structure of this material shows an obvious zigzag one-dimensional chain of spin-1/2

Cu+2 ions along c axis. Nevertheless, the magnetization and susceptibility data of Sasago

et al. [5] are in disagreement with a spin-1/2 Heisenberg chain model. The analysis of the

electronic structure of CaCuGe2O6 by first-principle calculations as well as the examination

of susceptibility and magnetization data by the Quantum Monte Carlo (QMC) method

leads to a unique description of this material as a system of dimers formed by third-nearest-

neighbor copper pairs [10].

Another example of spin dimer system with metal ions and organic ligands may be

vanadyl glycolate. The solvothermal reaction, at 200 ◦C, of vanadium pentoxide and lithium

hydroxide in acetic acid or ethylene glycol leads to the formation of vanadyl acetate and

vanadyl glycolate respectively. The structure of the acetate contains vanadium in octahedral

coordination whereas the glycolate contains VO5 square pyramids. The VO6 octahedra in

the acetate, VO(CH3COO)2, are joined through the vanadyl groups, giving a rather V=O

bond of 1.684(7) Å and a trans V–O bond of 2.131(7) Å, and by bridging acetate groups.

The vanadium atoms interact along the · · ·V=O· · ·V=O· · · chain giving one-dimensional
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antiferromagnetic behavior. In contrast in the glycolate, the apical V=O bond is shorter,

1.58(1) Å, and the square pyramids share edges in a two up two down fashion to give chains

of formula VO(OCH2CH2O). Magnetic susceptibility of vanadyl glycolate is consistent with

an isolated spin dimers model [11].

1.2.2 Alternating Chain Compounds:

The alternating chain is an infinite chain of dimers connected together, but the connection

between the dimers is not the same as the connection within the dimer. The intra-dimer

exchange and inter-dimer exchange constants, J1 and J2 < J1 alternate from bond to bond

along the chain. A schematic representation of an alternating Heisenberg antiferromagnetic

chain is shown in Figure 1.2. The system is represented by the Hamiltonian

H =
∑

i

[

J1
~S1(i) · ~S2(i) + J2

~S2(i) · ~S1(i+ 1)
]

(1.3)

where i is the position of a dimer. J1, J2 > 0 for AFM coupling.

J1 J1J2 J2

1 2d d

Figure 1.2: An alternating chain consists of pairs of spins separated by distance d1 and
interacting with strength J1, which are coupled with an identical pair a distance d2 away with a
strength J2.

If J1=J2, the system can be considered as a uniform AFM Heisenberg chain, the ground

state of which has been solved exactly. While the uniform Heisenberg chain has no spin gap,

the alternating chain compound on the other hand shows spin gap [2, 12], the magnitude

of which depends on J2/J1. If J2=0, the system is equivalent to the magnetic dimer.

The Hamiltonian in equation (1.3) describes the case of isotropic alternating chain. The

Hamiltonian corresponding to anisotropic alternating chain is represented by

H =
∑

i

(

J1

[

Sz
1(i)S

z
2(i) +

α1

2

{

S+
1 (i)S−

2 (i) + S−
1 (i)S+

2 (i)
}]

+ J2

[

Sz
2(i)S

z
1(i+ 1) +

α2

2

{

S+
2 (i)S−

1 (i+ 1) + S−
2 (i)S+

1 (i+ 1)
}]

)

(1.4)

where α1 and α2 being the spin anisotropy. Neither the anisotropic chain nor the isotropic

chain has been solved exactly, although a variety of approximation methods have been

applied to them.
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A good example of alternating spin chain system is that of vanadyl pyrophosphate,

(VO)2P2O7 [13, 14]. In (VO)2P2O7, the edge-sharing pairs of VO6 octahedra are stacked

along the a axis to form a two-leg structural ladder. The ladders are linked by covalently

bonded PO4 tetrahedra to form a three dimensional network with corner-sharing VO6 oc-

tahedra. INS investigation of the magnetic excitation [15–17] as well as several studies of

spin-phonon coupling [18–21] have been carried out, giving rise to well understood knowl-

edge of the spin Hamiltonian and low energy dynamics of this material. (VO)2P2O7 is now

known to be alternating chain compound. The alternating magnetic chains form along the

b axis, with V–O–V and V–O–P–O–V superexchange interactions. The strongest exchange

path is found to be that between two V+4 ions through two phosphate groups PO4 and

not between nearest-neighbor vanadium ions V–O–V as was initially thought. Substantial

“beyond Heisenberg” interactions have also been observed, including spin singlet to triplet

gap activated via magnetoelastic coupling in the (VO)2P2O7 system.

An example of S = 1/2 alternating linear Heisenberg organic antiferromagnet is pentaflu-

orophenyl nitroxide (F5PNN) [22]. The alternating linear Heisenberg antiferromagnet has

two antiferromagnetic interactions lying alternately in one dimension, and shows the exci-

tation gap at very low temperatures.

1.2.3 Ladder Compounds:

Both the magnetic systems, dimers and alternating chains, discussed above are one dimen-

sional, while a ladder system is intermediate between a one and two dimensional system,

called quasi 1-D system. To make the transition from the quasi long range order in a chain

of antiferromagnetically coupled S=1/2 spin to the true long range order that occurs in a

plane, one can assemble chains to make ladders of increasing width. Therefore a ladder

consists of two or more spin chains coupled together across “rung”. This additional cou-

pling changes the character of the interaction from one dimensional to two dimensional.

The Hamiltonian for general spin ladder is given by

H = J‖
∑

‖

~Si · ~Sj + J⊥
∑

⊥

~Si · ~Sj (1.5)

where J‖ is the exchange coupling along the direction of the spin chain (i.e., along the leg

of the ladder), and J⊥ is the exchange coupling between the chains (i.e., along the rung of

the ladder).
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The corresponding anisotropic spin ladder system can be represented by the Hamiltonian

H =
∑

i

(

J⊥
[

Sz
1(i)S

z
2(i) +

α⊥

2

{

S+
1 (i)S−

2 (i) + S−
1 (i)S+

2 (i)
}]

+ J‖
[

Sz
1(i)S

z
1(i+ 1) +

α‖

2

{

S+
1 (i)S−

1 (i+ 1) + S−
1 (i)S+

1 (i+ 1)
}]

+ J‖
[

Sz
2(i)S

z
2(i+ 1) +

α‖

2

{

S+
2 (i)S−

2 (i+ 1) + S−
2 (i)S+

2 (i+ 1)
}]

)

(1.6)

where spins 1 and 2 form a “rung” of the ladder, and the position i is summed along the

“length” of the ladder. The rungs and the legs of the ladder have different spin anisotropy,

α⊥ and α‖.

Schematic diagrams of 2- and 3-leg ladders are shown in Figure 1.3. Ladders made from

an even number of legs have spin liquid ground states, so called because of their purely

short-range spin correlation. An exponential decay of the spin-spin correlation is observed

characterized by a finite spin gap, namely, a finite energy gap to the lowest S=1 excitation.

A ladder with an odd number of legs on the other hand behaves quite differently and

displays properties similar to those of single chains at low energies, namely, gap less spin

excitations and a power-low falloff of the spin-spin correlations [23, 24].

J

J

Figure 1.3: 2-leg and 3-leg ladder

Dagotto et al. [25] assumed the ideal case where the exchange coupling along the rungs

of a 2-leg ladder is much larger than the coupling along the legs of the ladder. This

idealization has the advantage that rungs interacts only weakly with each other, and the

dominant configuration in the ground state is the product state with the spins on each rung

forming a spin singlet. The ground state has a total spin S=0 because each rung is in a

spin singlet

|ψs〉 =
(

| ↑↓〉 − | ↓↑〉
)

/
√

2 (1.7)
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To produce a S=1 excitation, a rung singlet must be promoted to a S=1 triplet

|ψt〉 =

[

| ↑↑〉,
(

| ↑↓〉 + | ↓↑〉
)

/
√

2, | ↓↓〉
]

(1.8)

An isolated rung-triplet has an energy J⊥ above the rung singlet. The coupling along the

chains creates a band of S=1 magnons with a dispersion, w(k) = J⊥ + J‖(cosk) in the

limit J⊥ ≫ J‖, where k is the wave vector. The spin gap is the minimum excitation energy

△spin = w(π) ≈ J⊥−J‖, which remains large in this limit [26]. Concurrently, the spins are

mostly uncorrelated between rungs because the spin correlations decay exponentially with

distance along the chains, leading to the spin liquid nature of this state.

In the other extreme, J⊥/J‖ = 0, the two chains decouple, but isolated spin-1/2 Heisen-

berg chains do not have a spin gap and excitations with S=1 and k = π are degenerate

with the ground state in the bulk limit. To reconcile the different behavior in the limits

J⊥/J‖ ≫ 1 and J⊥/J‖ = 0, it was conjecture [25] that the spin gap should smoothly

decrease as J⊥/J‖ is reduced, reaching △spin = 0 at some critical value of the coupling.

Later, Barnes et al. [26] observed that the power-law decay of the spin correlation in an

isolated chain implies that a chain is in a critical state and thus small perturbations can

qualitatively alter its properties. They predicted that the spin gap would vanish only at

J⊥/J‖ = 0, so that △spin > 0 at all J⊥/J‖ > 0, including the values of experimental

interest, J⊥/J‖ ∼ 1. The ladder spin systems therefore are always in spin-liquid states,

in contrast to the more familiar cases of the 1-D and 2-D Heisenberg models, which are

gapless.

Physical realizations of ladders like SrCu2O3 correspond to J⊥ ≈ J‖. However, at J⊥ =

J‖ there is no small parameter to guide a perturbative calculation, nor is an exact solution

known. Numerical techniques can handle the region J⊥ ≈ J‖, and exact diagonalization of

small clusters and results of QMC has been used [25, 26] to study △spin as a function of

J⊥/J‖. Numerical calculation of △spin [26] shows that indeed △spin > 0 for all J⊥/J‖ 6= 0.

At the realistic coupling J⊥ = J‖, the spin gap is △spin ≈ 0.5J‖. For even-leg ladders in

which the ratio of the rung to leg exchange constants is J⊥/J‖ ≤ 1, the spin gap decreases

exponentially with increasing number of legs [27]. A reduction in the size of the gap is

natural because as the width of the ladder grows, the limit for the 2-D square lattice is

approached and △spin → 0. The spin gap on the other hand remains zero with increasing

the number of legs for odd-leg ladder.

The first experimentally realized series of even- and odd-leg ladder structures was pro-

vided by the cuprates Srn−1Cun+1O2n (n=3,5,· · · ) [23, 28]. SrCu2O3 (n=3) is a two-leg

ladder. Measurement of spin susceptibility [1] shows that it vanishes exponentially at low

temperature, which is a clear sign of spin gap. Neutron scattering and muon spin resonance

measurements are consistent with short range spin order in the two-leg ladders, although
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they are unfrustrated spin systems that classically should order without a spin gap. Further

nuclear magnetic resonance (NMR) experiments have confirmed the large spin gap in the

excitation spectrum. Three-leg ladders (n=5 or Sr2Cu3O5) by contrast show longer range

spin correlations. There is excellent agreement between theory and experiment, confirming

that there is a dramatic difference between even- and odd-leg S=1/2 Heisenberg AFM

ladders.

The family of potential spin-ladder compounds was recently enriched with the synthesis of

the organic charge-transfer salt, [(DT-TTF)2][Au(mnt)2] (DT-TTF=dithio phenetetrathia-

fulvalene, mnt=maleonitrile dithiolate). At room temperature, the DT-TTF and Au(mnt)2

molecules form regular stacks of donor DT-TTF and acceptor Au(mnt)2 units along the

monoclinic crystallographic b axis. The DT-TTF stacks are arranged in pairs related by a

twofold screw axis and are isolated from each other by the Au(mnt)2 stacks. Pairs of organic

donor molecules are strongly linked by three interstack S· · ·S close contacts, resulting in

a structural two-leg ladder. Below 220 K, the DT-TTF stacks are dimerized giving rise to

the two-leg spin ladder in which the [(DT-TTF)+
2 ] dimers are the spin carrying units. The

temperature dependence of the susceptibility was interpreted as providing clear evidence

that [(DT-TTF)2][Au(mnt)2] is the first purely organic system with a two-leg spin-ladder

configuration [29].

1.2.4 Spin-Peierls Systems:

The spin-Peierls transition is an intrinsic lattice instability in spin-1/2 antiferromagnetic

Heisenberg chains; the driving force is the magnetoelastic coupling between the one-

dimensional spin structure and the three-dimensional lattice vibrations [30]. Above the

transition temperature Tsp, there is a uniform antiferromagnetic next-neighbor exchange

in each chain; below Tsp there is an elastic distortion resulting in dimerization, and hence

two, unequal alternating exchange constants. The dimerization increases progressively as

the temperature is lowered and reaches a maximum at zero temperature. The alternating

chain possesses an energy gap between the singlet ground state and the lowest lying band

of triplet excited states. The magnitude of the gap is related to the degree of dimerization

and hence to the degree of lattice distortion, becoming zero for the uniform chain (zero

dimerization). Thus the magnetic susceptibility χ(T ) shows a knee at Tsp, with a rather

abrupt fall of χ below Tsp, corresponding to the opening of the gap. Whereas the normal

Peierls distortion (the electronic analogue of the spin-Peierls transition) occurs at a temper-

ature Tp of the order of kBTp ∼ EF exp(−1/λ), where λ is the electron-phonon coupling

constant, the spin-Peierls transition will occur at kBTsp ∼ |J |exp(−1/λ), where J is the

exchange interaction between adjacent spins; since J ≪ EF (e.g. J is typically 50 K, EF

is typically 500–5000 K), Tsp is always small in comparison with Tp.
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There are only very few materials which show a spin-Peierls transition. This is because

antiferromagnetic chains usually form three-dimensional order at low temperature due to in-

ter chain coupling. Only in very few materials is the spin-phonon coupling able to dominate

the inter-chain spin-spin coupling and allow the formation of a spin-Peierls ground state. Ex-

amples of such materials are mainly organic systems, e.g. MEM(TCNQ)2 (Tsp=18 K) [31],

TTF-CuS4C4(CF3)4 (Tsp=12 K) [32], TTF-AuS4C4(CF3)4 (Tsp=2 K) [32, 33]. This is

because such materials contain flat organic molecules in columnar stacks. The large inter-

chain separation and weak van der Waals intermolecular interactions favor the dominance

of magnetoelastic effects over inter-chain ordering. In contrast the chains in correspond-

ing inorganic materials, such as copper chain compounds, are quite rigid due to the ionic

bonding and only a single example of an inorganic spin-Peierls material is known (CuGeO3,

with Tsp=14 K [34]).

1.3 Motivation of the present work

A very important aspect in the study of low-dimensional QSS is the knowledge of the spin

model, given a specific compound. A microscopic investigation for this purpose is essential,

since often the nature of the underlying exchange network is not what is expected from

crystal structure—one needs to take into account the chemistry aspect. Microscopic inves-

tigation also provides quantitative numbers corresponding to various exchange interactions.

Another possible route often used, is to fit the measured susceptibility data with some

assumed theoretical model. This method suffers from the drawback that the susceptibility

data is quite insensitive to the details and two different models may be fitted to same data

with two different sets of fitting parameters. (VO)2P2O7 forms a classic example in this

regard which turned out to be an alternating chain compound while it was originally con-

sidered to be an example of ladder compound [35]. Therefore microscopic understanding

is required for the sake of uniqueness. In the following, we sketch the framework which we

will follow for the microscopic investigation.

From a microscopic point of view, theoretical solid state physics is concerned with the

investigation of interacting many particle systems involving both electrons and ions. How-

ever, it is an established fact that many of the properties of matter are well described by

the purely electronic Hamiltonian of the form

Ĥ =
∑

σ

∫

d3rΨ̂†(r, σ)

[

− ~
2

2me

∇2 + Vion(r)

]

Ψ̂(r, σ)

+
1

2

∑

σ,σ′

∫

d3rd3r′Ψ̂†(r, σ)Ψ̂†(r′, σ′)Vee(r − r′)Ψ̂(r′, σ′)Ψ̂(r, σ), (1.9)

where the crystal lattice enters only through an ionic potential. The applicability of this
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approach may be justified by the validity of the Born and Oppenheimer approximation [36].

Here, Ψ̂†(r, σ) and Ψ̂(r, σ) are field operators that create and annihilate an electron at

position r with spin σ, me the electron mass, e the electron charge, and

Vion(r) = −e2
∑

i

Zi

|r− Ri|
(1.10)

and

Vee(r − r′) =
e2

2

∑

r 6=r′

1

|r− r′| (1.11)

denote the one particle potential due to all ions i with charge eZi at given positions Ri,

and the electron-electron interaction, respectively.

While the ab initio Hamiltonian (1.9) is easy to write down, it is impossible to solve

exactly if more than a few electrons are involved. Numerical methods like Green’s Func-

tion Monte Carlo and related approaches have been used successfully for relatively modest

numbers of electrons. Because of this, one generally either needs to make substantial ap-

proximations to deal with the Hamiltonian (1.9) as is done in local density approximation

of density functional theory (LDA-DFT), or replace it by a greatly simplified many-body

model Hamiltonian. At present these two different strategies for the investigation of the

electronic properties of solids are applied by two largely separate groups of people: the

density functional theory community and the many-body community.

DFT-based LDA calculations have been immensely successful in providing the ground

state properties of many of the systems [37]. However, it is not possible to describe the

electronic structure and related properties of strongly correlated systems like d- and f -

electron systems which have a Coulomb interaction comparable to band width within the

DFT-LDA framework. Application of DFT-LDA in describing ground state properties of

such materials is seriously restricted in its accuracy and reliability. This is because the

strong interactions preclude the possibility of any effective single-particle description. The

transitional metal based quantum spin systems that we are interested in precisely falls

in this category of strongly correlated electron system. On the other hand, although the

models play an important role in understanding many of the interesting physics in correlated

electrons; it must be noted that depending on parameter values they can show vastly

different properties. All the anomalous properties of these correlated compounds are highly

sensitive to small changes in temperature, pressure and doping, there by proving an intricate

interplay between material specific chemistry and the correlation effect. The material-

specific aspect and the correlation effect therefore need to be dealt on equal footing. DFT-

LDA approach though fails in capturing the correlation aspect, correctly incorporates the

material-specific details. It is therefore highly desirable to combine the many-body model
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Hamiltonian approach with that of DFT-LDA approach in terms of defining material-specific

model Hamiltonians out of DFT-LDA calculations.

The work presented in this thesis focuses on modeling of a system of complex materials,

which fall in the category of quantum spin systems, starting from DFT-LDA electronic

structure of the compounds. Such microscopically derived many-body model Hamiltonian

which is the spin Hamiltonian of the systems can be used as inputs to the next level of

calculation in terms of solution of the first principles derived model Hamiltonian by many-

body techniques like Quantum Monte Carlo (QMC) or Exact diagonalization to derive the

physical properties of the systems.

In this thesis application has been made to systems where magnetic ions are linked by

inorganic ligands as well as materials having magnetic ions linked by organic ligands, the

so-called hybrid materials. While sections 3, 4 and 5 deal with materials with inorganic

linkers, sections 6 and 7 are devoted to materials with organic ligands. In section 2 we

briefly describe the DFT-LDA framework which has been employed for the study of these

materials.
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2 Methodology

2.1 Density functional theory and local density

approximation

The fundamental theorem of DFT by Hohenberg and Kohn [1] states that the ground

state energy is a functional of the electron density which assumes its minimum at the

ground state electron density. Following Lavy’s constrained search approach [2] is easily

proved and functional can even be constructed by taking the minimum (infimum) of the

energy expectation value w.r.t all (many-body) wave functions ϕ(r1σ1, ...., rNσN ) at a given

electron number N which yield electron density ρ(r):

E[ρ] = inf

{

〈ϕ|Ĥ|ϕ〉
∣

∣

∣

∣

〈ϕ|
N

∑

i=1

δ(r − ri)|ϕ〉 = ρ(r)

}

(2.1)

However, this construction is of no practical value since it actually requires the evaluation

of the Hamiltonian (1.9). Only certain contributions like the Hartree energy EHartree[ρ] =
1
2

∫

d3r′d3rVee(r−r′)ρ(r′)ρ(r) and the energy of the ionic potential Eion[ρ] =
∫

d3rVion(r)ρ(r)

can be expressed directly in terms of the electron density. DFT assumes existence of a func-

tional of the form

E[ρ] = Ekin[ρ] + Eion[ρ] + EHartree[ρ] + Exc[ρ], (2.2)

where Ekin[ρ] denotes the kinetic energy (K.E.) and Exc[ρ] is the unknown exchange and

correlation term which contains the energy of the electron-electron interaction except for

the Hartree term. Hence all the difficulties of the many-body problem has been transferred

into Exc[ρ]. While the K.E. Ekin[ρ] can not be expressed explicitly in terms of the electron

density one can employ a trick to determine it. Instead of minimizing E[ρ] w.r.t ρ one

minimizes it w.r.t a set of one particle wave functions ϕi related to ρ via

ρ(r) =
N

∑

i=1

|ϕi(r)|2 (2.3)

To guarantee the normalization of ϕi, the Lagrange parameters ǫi are introduced such

that the variation δ
{

E[ρ] + ǫi[1 −
∫

d3r|ϕi(r)|2]
}

/δϕi(r) = 0 yields the Kohn-Sham [3]

21
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equations:

[

− ~
2

2me
∇2 + Vion(r) +

∫

d3r′Vee(r − r′)ρ(r′) +
δExc[ρ]

δρ(r)

]

ϕi(r) = ǫiϕi(r) (2.4)

These equations have the same form as a one-particle Schrödinger equation which, a

posteriori, justifies to calculate the K.E. by means of the one particle wave-function ansatz.

The K.E. of a one particle ansatz which has the ground state density is, then, given by

Ekin[ρmin] = −∑N
i=1〈ϕi|~2∇2/2me|ϕi〉 if the ϕi are the self-consistent (spin-degenerate)

solutions of Eqs. (2.4) and (2.3) with lowest “energy” ǫi. Note, however, that the one

particle potential of Eq. (2.4), i.e.,

Veff = Vion(r) +

∫

d3r′Vee(r − r′)ρ(r′) +
δExc[ρ]

δρ(r)
, (2.5)

is only an auxiliary potential which artificially arises in the approach to minimize E[ρ]. Here,

the wave functions ϕi and the Lagrange parameters ǫi have no physical meaning at this

point.

So far no approximations have been employed since all the difficulty of the many-body

problem was transferred to the unknown functional Exc[ρ(r)]. A very successful approx-

imation for Exc[ρ(r)] has been provided by local density approximation (LDA) which ap-

proximates the functional Exc[ρ(r)] by a function that depends on the local density only,

i.e.,

ELDA
xc [ρ(r)] =

∫

ǫhom
xc

(

ρ(r)
)

ρ(r)dr, (2.6)

where ǫhom
xc (ρ) is the exchange-correlation energy per electron of a uniform electron gas

of density ρ. The non-uniform electron gas at r is therefore treated as if it were part

of a uniform electron gas of constant density ρ = ρ(r). This approximation is obviously

accurate when the electron density is almost uniform, but also works surprisingly well when

the distribution of electron is strongly inhomogeneous. ELDA
xc [ρ(r)] is usually calculated

from the perturbative solution [4] or the numerical simulation [5] of the homogeneous

electron gas.

The analogous approximation for spin-polarized systems, which is known as the local

spin-density approximation (LSDA), has also proved very successful. The local spin-density

approximation is a straightforward generalization of the LDA to include electron spin:

ELSDA
xc [ρ↑, ρ↓] =

∫

ǫhom
xc (ρ↑, ρ↓)ρ(r)dr (2.7)

Highly accurate formulae for the exchange-correlation energy density ELSDA
xc [ρ↑, ρ↓] have

been constructed from Quantum Monte Carlo simulations of a free-electron gas.
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A next level of approximations are the so-called generalized gradient approximations.

Generalized gradient approximations (GGA) are still local but also take into account the

gradient of the density at the same coordinate:

EGGA
xc [ρ↑, ρ↓] =

∫

ǫhom
xc (ρ↑, ρ↓, ~∇ρ↑, ~∇ρ↓)ρ(r)dr (2.8)

Using the latter (GGA) very good results for molecular geometries and ground state energies

have been achieved. Many further incremental improvements have been made to DFT by

developing better representations of the functionals.

Altogether, these equations allow for the DFT/LDA calculation, see the flow diagram

Figure 2.1.

First principles information:

atomic numbers, crystal structure (lattice, atomic positions)

Choose initial electronic density ρ(r)

Calculate effective potential using the LDA [Eq. (2.5)]

Veff = Vion(r) +
∫

d3r′Vee(r− r′)ρ(r′) + δExc[ρ]
δρ(r)

Solve Kohn-Sham equations [Eq. (2.4)]
[

− ~2

2me
∇2 + Veff(r) − ǫi

]

ϕi(r) = 0

Calculate electronic density [Eq. (2.3)]

ρ(r) =
∑N

i=1 |ϕi(r)|2

Iterate to self-consistency

Calculate band structure ǫi(k) [Eq. (2.4)], partial and total DOS, inter-atomic

forces, self-consistent Hamiltonian, total energy E[ρ][Eq. (2.1)],· · ·

FIGURE 2.1: Flow diagram of the DFT/LDA calculations.

In principle DFT/LDA only allows one to calculate static properties like the ground state

energy or its derivatives. However, one of the major applications of LDA is the calculation

of band structures. To this end, the Lagrange parameters ǫi are interpreted as the physical

(one-particle) energies of the system under consideration. Since the true ground state is

not a simple one particle wave function, this is an approximation beyond DFT. Actually
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this approximation corresponds to the replacement of the Hamiltonian (1.9) by

ĤLDA =
∑

σ

∫

d3rΨ̂†(r, σ)

[

− ~
2

2me
∇2 + Vion(r)

+

∫

d3r′Vee(r − r′)ρ(r′) +
δELDA

xc [ρ]

δρ(r)

]

Ψ̂(r, σ) (2.9)

For particular calculation one needs to expand the field operators w.r.t. a basis. One

particular band structure code differs from another in the choice of this basis function.

For our purpose, we will be mostly using muffin-tin orbital based linear muffin-tin orbital

(LMTO) [6] and N th order muffin-tin orbital (NMTO) [7, 8] basis sets. The NMTO

method which is not yet self-consistent relies on the self-consistent potential parameters

derived from a LMTO calculation. To check the accuracy of our LMTO calculations we have

also carried out full potential linear augmented plane waves (LAPW) calculations [9]. For

materials, which are not structurally well-characterized we have also performed theoretical

structural optimization in terms of ab initio molecular dynamics (AIMD) calculations [10]

based on the Projected Augmented Wave (PAW) method [11] (see Section 3, 6, and 7).

2.2 Basis sets

2.2.1 Linear Muffin-Tin Orbital (LMTO) method:

The traditional basis sets may be divided into those which express the wave-functions as

linear combinations of some fixed basis functions say plane waves or atomic orbitals and

those like the cellular, Augmented Plane Wave (APW) and Korringa-Kohn-Rostoker (KKR)

methods [12] which employ matching of partial waves. In the method of fixed basis sets by

standard variation techniques one obtains a set of linear eigenvalue equations given by

(

H − ǫO
)

· b = 0 (2.10)

in terms of the Hamiltonian H and overlap matrix O to determine the eigenvalues ǫ and

the expansion coefficients b, while the methods of partial waves result in solving set of

equations of the form,

M(ǫ) · b = 0 (2.11)

In contrast to equation (2.10) which is polynomial in ǫ, the secular equation (2.11) has

a complicated non-linear energy dependence.

The partial wave methods though complicated to solve, do have advantages. Firstly, they

provide solutions of arbitrary accuracy for a muffin-tin potential and for close packed sys-

tems, this makes them far more accurate than the traditional fixed basis methods. Secondly
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the information about the potential enters only via a few functions of energy. However as

already stressed, it has the disadvantage of being computationally heavy, the eigen energies

ǫj must be found individually by tracing the roots of the determinant of M as a function

of ǫ.

The linear methods devised by Andersen (1975) are characterized by using fixed basis

functions constructed from partial waves and their first energy derivatives obtained within

the muffin-tin approximation to the potential. These methods therefore lead to secular

equations like (2.10) rather than (2.11). The linear methods thus combine the desirable

features of the fixed basis and partial wave methods. In the LMTO [6] an energy dependent

basis set χRL(r) is derived from the energy dependent partial waves in the form of muffin-tin

orbitals.

The transformation of this method for self-consistent calculations of the electronic struc-

ture of solids into a first-principles tight-binding method (TB-LMTO) is particularly useful

due to localized nature of basis functions, which will be particularly useful for the real space

construction of model Hamiltonians.

The method relies on the muffin-tin approximation of the potential which divides the

space into atom-centered muffin-tin spheres and the interstitial. While the solution of

Schrödinger equation inside the spherically symmetric muffin-tin sphere is partial waves,

that in the interstitial is plane waves which can be expanded in terms of spherical Neumann

and Bessel functions. The basis is constructed by joining these two solutions at the muffin-

tin sphere boundaries continuously and smoothly. Finally the LMTO basis is derived by

linearising this energy dependent basis set. In the further steps towards simplification,

the method relies on atomic sphere approximation (ASA) which replaces the muffin-tin

spheres by space-filling atomic spheres, called Wigner-Seitz (WS) spheres. With the above

mentioned approximations, the information needed to set up the Hamiltonian can be divided

into two independent parts. The first part contains the structure matrix which depends only

on the structure and the positions of the atoms and not on the type of atoms occupying

the sites. The second part of the information depends on the solution of the Schrödinger

equation inside each inequivalent WS sphere with appropriate boundary conditions. This

second part yields the so-called potential parameters for each site.

Within the ASA, the LMTO basis functions have the following form:

χα
RL(rR) = φRL(rR) +

∑

R′L′

φ̇α
R′L′(rR′)hα

R′L′,RL (2.12)

where L denotes collective angular momentum index (lm). Atomic sites are given by the

position vectors R with rR = r −R. φ is a product of a spherical harmonic and the solution

φνRL(|rR|) to the radial wave equation, i.e., the partial waves inside the sphere centered

at R for a certain energy ǫνRL which is the energy of linearization. The functions φ̇α are
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the linear combinations of the φ’s and their energy derivatives φ̇. The actual choice of how

the linear combination is made determines the basis i.e. the label α. The functions φ are

normalized inside the spheres to which they are associated, φ and φ̇ are orthogonal and

they vanish, by definition outside their own sphere. The matrix hα is given by

hα = Cα − ǫν +
(

△α
)1/2

Sα
(

△α
)1/2

(2.13)

where Cα and △α are the diagonal potential matrices. They depend on the potential

inside the spheres, the representation (α) chosen and on the sphere radii. The band center

parameter Cα is given by

Cα = ǫν −
P α(ǫν)

Ṗ α(ǫν)
(2.14)

and the band width parameter is given by
√

(

△α
)

=
1

Ṗ α(ǫν)
(2.15)

where P α(ǫ) and Ṗ α(ǫ) are the potential function and its energy derivative appropriate to

the representation α. The relationship between the potential function P α(ǫ), the represen-

tation matrix α and the logarithmic derivative Dl of the partial wave at sphere boundary is

given by

{

P α(ǫ)

}−1

=

{

2(2l + 1)
Dl + l + 1

Dl(ǫ) − 1

}−1

− α (2.16)

Sα is the structure constant matrix depending on the representation and the geometrical

arrangement of the atomic sites. In terms of the canonical structure constant S0, Sα is

given by

Sα = S0
(

1 − αS0
)−1

(2.17)

The representation is uniquely defined by the choice of the α matrix. All representations

span the same Hilbert space, and there exists an exact transformation from one represen-

tation to another. Two particular representations are of interest the γ-representation and

the tight-binding (TB) representation, β. The former e.g. can be used in the construction

of sp3 hybrids for which it is convenient due to the orthogonality of the basis function.

In the TB representation on the other hand the basis functions are very localized. The

γ-representation Hamiltonian correct to second order in energy (ǫ− ǫν) is given by

H(2) = ǫν + hγ = Cγ +
(

△γ
)1/2

Sγ
(

△γ
)1/2

(2.18)

where ǫν is the diagonal matrix containing the linearization energies. The overlap matrix

in this representation is a unit, diagonal matrix and therefore this representation is also
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referred to as the orthogonal representation. The transformation from the γ to the β

representation involves a scaling of the potential parameters C and △, calculation of the

real space structure constants Sβ. With the choice

β =











0.3485 l = 0 (s)

0.05303 l = 1 (p)

0.010714 l = 2 (d)











(2.19)

the screened structure constants are found to be most localized with universal exponential

decay in distance d measured in terms of WS radius w.

Sβ
ll′m = A.exp

(

− λβ
ll′md/w

)

(2.20)

for all the structures (f.c.c, b.c.c, h.c.p etc.). In this representation the TB orbitals are

extremely compact, extending only to nearest neighbor shell.

For the purpose of self-consistency, particularly for open structures it is necessary to go

beyond the ASA to attend the desired accuracy. This is done by including a correction term

called combined correction. Including the combined correction, the Hamiltonian is given by

H(2) = ǫν + hγ −
(

κ2
ν + V0

)

∂κ2hγ

= Cγ +
(

△γ
)1/2

Sγ
(

△γ
)1/2 −

(

κ2
ν + V0

)

∂κ2hγ , (2.21)

where ǫ = κ2 + V0.

In the following all the self-consistent calculations have been carried out with TB-LMTO

including the combined correction. For open structure in addition to atomic spheres, the

empty spheres have been used to fill up the space without violating the maximum overlap

criteria between the different spheres recommended within LMTO formalism. We have

made use of both LDA and GGA for the exchange correlation part.

2.2.2 NMTO method:

Although the LMTO method has been highly successful in terms of computer inexpensive

calculations of self-consistent electronic calculations, the essential disadvantages of the

method are the followings:

(i) The basis is complete to (ǫ − ǫν) (i.e., 1st order) inside the sphere while it is only

complete to
(

ǫ− ǫν
)

0=1 (i.e., 0th order) in the interstitial which is inconsistent. It can be

made consistent by removing the interstitial region by ASA.

(ii) The non-ASA corrections, namely the combined corrections, may of course be included

in the Hamiltonian and in the overlap matrices as discussed in previous section. But,(a)this

makes the formalism heavy, and (b) basis must often be increased by multi-panel calculation.
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(iii) The expansion of the Hamiltonian H in the orthogonal representation as a power series

in the two centered tight-binding Hamiltonian h:

〈χ̃|
(

H − ǫν
)

|χ̃〉 = h− hoh+ · · · (2.22)

is obtained only within ASA and excluding downfolding.

In step towards providing an energetically more accurate basis set that is based on MTO

formalism and to rectify the disadvantages associated with LMTO basis, the N th order

MTO basis was introduced. The primary features of this method is:

(i) It still has a Muffin-tin potential.

(ii) Still uses the partial waves, φ within the atomic spheres.

(iii) Instead of Neumann function it use screened spherical waves (SSWs) in the interstitial

region.

(iv) Out of partial waves and SSWs it define the kinked partial waves (KPWs).

(v) It construct energy-independent NMTOs, which are superpositions of KPWs evaluated

at N + 1 energy points.

In general, the members (labeled by R′L′) of the NMTO basis set for the energy mesh

ǫ0, · · · , ǫN are superpositions,

χN
R′L′(r) =

N
∑

n=0

∑

RL∈A

φRL(ǫn, r)L
(N)
nRL,R′L′, (2.23)

of the kinked partial waves, φRL(ε, r) at the N + 1 points (labeled by n) of the energy

mesh. Expression (2.23) is the energy-quantized form of Lagrange interpolation,

χN(ε) ≈
N

∑

n=0

φ(ǫn)l(N)
n (ε), l(N)

n (ε) ≡
N
∏

m=0, 6=n

ε− ǫm
ǫn − ǫm

, (2.24)

of a function of energy, φ(ε), by an Nth-degree polynomial, χN(ε): The Nth-degree

polynomial, l
(N)
n (ε), is substituted by a matrix with elements, L

(N)
nRL,R′L′, the function of

energy, φ(ε), by a Hilbert space with axes, φRL(ε, r), and the interpolating polynomial,

χ(N)(ε) by a Hilbert space with axes, χ
(N)
R′L′(r).

A kinked partial wave is basically a partial wave with a tail joined continuously to it

with a kink at a central, so-called hard sphere of radius aR. As usual, the partial wave

is ϕRl(ε, rR)YL(r̂R), where the function of energy is the regular solution of the radial

Schrödinger equation,

−
[

rϕRl(ε, r)
]′′

=
[

ε− vR(r) − l(l + 1)/r2
]

rϕRl(ε, r), (2.25)

for the potential-well vR(r). The tail of the kinked partial wave is so called screen spherical

wave, ψRL(ε, r), which is essentially the solution with energy ε of the wave equation in the
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interstitial between the hard spheres, △ψ(ε, r) = εψ(ε, r), with the boundary condition

that, independent of the energy, ψRL(ε, r) go to YL(r̂R) at the central hard sphere, and

to zero (with a kink) at all other hard spheres. The Lagrange coefficients, L
(N)
n , as well

as the Hamiltonian and overlap matrices in the NMTO basis are expressed solely in terms

of the KKR resolvent, K(ε)−1, and its first energy derivative, K̇(ε)−1, evaluated at the

energy mesh, ε = ǫo, · · · , ǫN .

This NMTO method gives rise to an energetically accurate and compact formalism for

intelligible electronic structure calculation. The energy selective and localized nature of

NMTO basis makes the NMTO set flexible and may be chosen as truly minimal (≡
span selected bands with as few basis functions as there are bands) via the so called down-

folding procedure [7, 8]. The downfolding procedure is an energy selection procedure which

selectively picks up few bands of interest out of the LDA all band calculation by integrating

out degrees of freedom that are not of interest, called passive channels and retaining few

degrees of freedom, called active channels. The accuracy of such a procedure can be tuned

by the choice of N , the number of energy points used in the NMTO calculation. If the

selected bands are isolated, the NMTO set spans the Hilbert space of the Wannier func-

tions and the orthonormalized NMTOs are the Wannier functions. Even if the bands

overlap with other bands, it is possible to pick out those few bands and their correspond-

ing Wannier-like functions with NMTO method. The NMTO method can thus be used

for direct generation of Wannier or Wannier-like functions which can be used as effective

orbitals that have the central character of an active orbital and the tails shaped according

to passive, downfolded orbital characters. The real space representation of the downfolded

Hamiltonian in the basis of NMTO provide the hopping matrix elements. This procedure

of direct generation of Wannier function may be constructed with the procedure of con-

structing Wannier function out of computed Bloch functions through maximum localization

criteria [13].
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3 Microscopic model for the

frustrated Cu II-spin

tetrahedron-based Cu4Te5O12X4

(X = Cl,Br) systems∗

3.1 Introduction

Frustrated magnetism has gained a lot of attention in recent years due to the wealth of exotic

behavior that arises out of this condition such as spin ice and spin liquid phases [1]. In the

search for new materials exhibiting frustrated magnetism, a few years ago Johnsson et al. [2]

synthesized a family of oxohalogenides Cu2Te2O5X2, X=Br, Cl whose structure was based

on weakly coupled tetrahedra of Cu(II) with geometrically frustrated antiferromagnetic

(AF) interactions. These materials have been intensively studied both experimentally and

theoretically [3–6, 8–11]. They show magnetic ordering with incommensurate wave vectors

at temperatures TN = 18 K (Cl) and 11 K (Br) and the observation of a longitudinal

magnon [5] in Cu2Te2O5Br2 was interpreted as evidence for the proximity of this system to

a quantum phase transition between antiferromagnet and spin liquid behavior.

The various intratetrahedral and intertetrahedral couplings and the relative strengths

of exchange pathways in these compounds have been obtained in detail [6] by using the

electronic structure technique of muffin-tin orbital (MTO) based NMTO-downfolding [12].

The results predicted by this study have been confirmed by subsequent neutron diffraction

experiments [13] proving the powerfulness of this ab initio Density Functional Theory (DFT)

based method in predicting the underlying microscopic model of a complex material [7].

By changing the subtle ratio between the various interaction paths in these materials,

for instance by applying pressure or by introducing chemical modifications [14–16], one

can attempt to drive these systems into quantum criticality. Following these ideas, a

new oxohalogenide Cu4Te5O12Cl4 has been very recently synthesized by Takagi et al. [17]

∗This work has been published in Phys. Rev. B 75, 024404 (2007)
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Figure 3.1: Crystal structure of Cu-45124(Cl) (left panel) and Cu-2252(Cl) (right panel)
projected on the ab plane. In order to emphasize the similarity between the Cu-2252(Cl) and
Cu-45124(Cl) structures, we use four unit cells of Cu-45124(Cl) but show only the section that
makes this structure analogous to a section of four Cu-2252(Cl) unit cells showing four connected
Cu tetrahedra. The balls representating various atoms are of varying sizes, Te being the largest,
and Cl, Cu and O in order of decreasing sizes. Magenta and pink atoms stand for Cu and Cl.
Two inequivalent Te atoms, Te(1) and Te(2) in Cu-45124(Cl) are shown in deep blue and yellow
colors (left panel), while the only one inequivalent Te atom present in Cu-2252(Cl) is shown in
yellow color (right panel). The smallest brown, green and white balls denote O(1), O(2) and O(3)
respectively for Cu-45124(Cl) (left panel) and O(3), O(1) and O(2) for Cu-2252(Cl) (Ref. [18]).
Note that every four Cu atoms appearing in a square arrangement, due to the projection, actually
form tetrahedra. We also show the various interaction paths in black arrows (see the text for
discussion).

which orders antiferromagnetically at TN = 13.6 K. This system is structurally similar to

the previously discussed Cu2Te2O5Cl2 but presents some markedly different features. As

pointed out by Takagi et al., the primary structural difference between the Cu4Te5O12Cl4

(which we refer to as Cu-45124(Cl) following Ref. [17]) and Cu2Te2O5Cl2 (Cu-2252(Cl))

is the presence of a TeO4 complex in the middle of the Cu-tetrahedral network in the ab

plane (see Fig. 3.1). This fact led the authors of Ref. [17] to expect an increase in the

separation between the Cu4 tetrahedra and hence an increase in the relative importance of

the intratetrahedral coupling with respect to the intertetrahedral coupling.

In the following, we study this proposition within the framework of theNMTO-downfolding

technique. In addition, motivated by the more anomalous properties of Cu2Te2O5Br2 com-

pared to Cu2Te2O5Cl2 as reported in the literature [3–6, 8–11, 14, 15], we explore the

implications of substituting Cl by Br in the Cu-45124(Cl). Since the Cu-45124(Br) system
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Figure 3.2: View of the crystal structure of the Cu-45124(Cl) (left panel) and Cu-2252(Cl)
(right panel) compounds along the [001] direction. Color scheme and the convention for ball sizes
is the same as in Fig. 3.1. The thick arrows denote the various interaction paths.

has not been synthesized yet, we propose the crystal structure of Cu4Te5O12Br4 by per-

forming a geometry relaxation in the framework of ab-initio molecular dynamics and we

analyze its electronic structure by the NMTO-downfolding technique.

3.2 Structure

Both Cu-45124(Cl) and Cu-2252(Cl) compounds crystallize in a tetragonal structure. The

basic structural unit in both systems is the [CuO3Cl] distorted square (marked in thin lines in

Fig. 3.1) with Cu (marked in magenta in Fig. 3.1) at the center. Groups of four such squares

share corners, giving rise to [Cu4O8Cl4] units with Cu ions in tetrahedral coordination. Cu-

45124(Cl) has two inequivalent Te atoms, Te(1) and Te(2) (marked in black and yellow in

Fig. 3.1 left panel), while Cu-2252(Cl) has only one type of Te atoms (marked in yellow in

Fig. 3.1 right panel). The Te(2) atoms in Cu-45124(Cl) sit on an equivalent position to the

Te atoms in Cu-2252(Cl). Viewing the structures along the [001] direction (see Fig. 3.2),

they show a stacking of Cu4 tetrahedra separated by layers of Te(2)–O(3) (Cu-45124(Cl))

or Te–O(2) (Cu-2252(Cl)) units. In the case of Cu-45124(Cl), additional Te(1)–O(1) units

appear in the same layer as Cu. The relative orientation of the Cu4 tetrahedra along the

[001] direction is also different between the two compounds. In the case of Cu-2252(Cl) the

Cu4 tetrahedra show the same orientation, while for Cu-45124(Cl) they alternate between
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successive rows. The latter feature leads to two different space group symmetries, P 4̄ for

Cu-2252(Cl) and P4/n for Cu-45124(Cl) with elongation of the unit cell in the ab plane

with lattice parameter a = 11.35 Å for Cu-45124(Cl) compared to a = 7.84 Å for Cu-

2252(Cl). The unit cell dimensions along the c axis remain comparable with c = 6.32 Å

for Cu-2252(Cl) and c = 6.33 Å for Cu-45124(Cl). The change in space group defines

Cu-45124(Cl) as centrosymmetric compared to the non-centrosymmetric Cu-2252(Cl).

A crucial difference between the two compounds apart from the change in bond lengths,

is the relative orientation of the Cu–Cl bonds (Cl atoms are marked in pink in Fig. 3.1)

among different Cu4 tetrahedra. As has been discussed in Ref. [6], the Cl atoms play an

important role in mediating the Cu–Cu interaction in the Cu-2252 systems. While for Cu-

2252(Cl) the Cu–Cl bonds belonging to different Cu4 tetrahedra point towards each other

(marked with red arrows in Fig. 3.1 right panel), in the case of Cu-45124(Cl), due to the

relative shift of the tetrahedra, they are oriented parallel to each other (see the red arrows

in Fig. 3.1 left panel). This aspect is found to have important consequences in the context

of hopping interaction pathways as will be discussed later.

3.3 Bandstructure

Fig. 3.3 shows the non spin-polarized band dispersion of Cu-45124(Cl) obtained with the

linear muffin-tin orbital (LMTO) basis [19] within the framework of local density approxima-

tion (LDA). The bands are plotted along the various symmetry directions of the tetragonal

Brillouin zone. The orbital characters indicated in the figure are obtained by choosing the

local coordinate system with the y axis pointing along the Cu–O(3) bond and the x axis

pointing along the Cu–Cl bond. The square planar symmetry of the ligands surrounding the

Cu2+ ion sets the Cu-3dx2−y2 energy level as the highest energy level. Consistent with the

Cu2+ valency, eight bands (there are 8 Cu atoms in the unit cell) dominated by Cu-dx2−y2

character and split off from the rest of the bands, span an energy range from ≈ -0.3 eV to

0.2 eV with the zero of energy set at the LDA Fermi level. The energy bands dominated

by other d characters like dxy, dzx, dyz and d3z2−1 are located in the energy range between

≈ −3 eV and −2 eV overlapping with the O-p manifold. The Cl-p dominated bands appear

right above and partly overlapping the O-p bands within an energy range of ≈ −1 eV. These

Cl-p dominated bands are separated by a gap of ≈ 0.5 eV from the Cu-dx2−y2 dominated

bands. There is only a negligible contribution of Te(1) and Te(2) to the bands crossing

the Fermi energy. We note that in the low-energy scale, the LDA calculation leads to eight

almost half-filled bands, i.e., to a metallic state. Introduction of correlation effects within

an LDA+U treatment are expected to drive the system insulating. In what follows though

we will focus on the ab initio determination of effective one electron hopping interactions
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Figure 3.3: LDA band dispersion of Cu-45124(Cl) plotted along various symmetry directions
with Γ = (0, 0, 0), X = (π, 0, 0), M = (π, π, 0), Z = (0, 0, π), R = (0, π, π) and A = (π, π, π).
The dominant orbital contributions in various energy ranges are shown in small boxes drawn on
the right hand side.

which are well described within LDA and GGA.

In Fig. 3.4 we show a comparative study of the various partial LDA density of states

(DOS) for Cu-45124(Cl) and Cu-2252(Cl).

While the basic features of the DOS remain the same between the two compounds—

indicating that the overall nature of the interactions will be similar for both systems—there

are a few quantitative differences. The Cu-d bandwidth at EF is narrower in Cu-45124(Cl)

than in Cu-2252(Cl). The relative proportion of the Cl-p and O-p contribution to the

bands at EF is also smaller in the case of Cu-45124(Cl). The O-p and Cl-p dominated

bands, instead of being separated, overlap to a larger extent in the case of Cu-45124(Cl).

Understanding and quantifying these differences requires the analysis of the bandstructure

in terms of a microscopic model.
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Figure 3.4: Comparison of the density of states between the Cu-45124(Cl) (left panel) and
Cu-2252(Cl) (right panel) compounds.

3.4 Downfolding and effective model

A powerful technique to construct a low-energy, tight-binding (TB) Hamiltonian starting

from a complex LDA bandstructure is achieved via the NMTO-downfolding technique [12]

as introduced in previous section. For the present study, we construct the massively down-

folded Hamiltonian by keeping only the Cu-dx2−y2 degrees of freedom active and integrating

out all the rest. The computed, downfolded bands are shown in the left panel of Fig. 3.5

with solid lines. With the choice of two energy points, E0 and E1, the downfolded bands are

indistinguishable from the Cu-dx2−y2 dominated bands of the full LDA calculation shown in

dashed lines in the left panel of Fig. 3.5.

The corresponding Wannier function is plotted in Fig. 3.6. Two different views of the

same orbital are shown. The central part has the 3dx2−y2 symmetry with the choice of the

local coordinate system as stated above, while the tails are shaped according to Cl-px and

O-px/py symmetry demonstrating the hybridization effects. The strong pdσ antibonds are

evident in the plot with Cu hybridization being stronger with Cl than with O, a fact also

evident in the density of states plot, shown in Fig. 3.4.

The real space representation of the downfolded Hamiltonian in the Wannier function

basis, HTB = −∑

ij tij
(

ĉ†i ĉj + h.c.
)

provides the information of the effective hopping

interaction tij , between the Cu2+ ions at sites i and j. The various dominant hopping

interactions are tabulated in Table 3.1. The notation for the hoppings are shown in Figs. 3.1

and 3.2. While the hoppings t1, t2, tx, ta and tr are in-plane hoppings in the plane defined

by the Cu tetrahedra, tz and tc are out-of-plane hoppings. For the sake of consistency, we

adopt for Cu-45124(Cl) the same hopping notation introduced earlier for Cu-2252(Cl) in
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Figure 3.5: Left panel: Bands obtained with massively downfolded Cu dx2−y2 basis (in solid
lines) compared to full LDA band structure (in dashed lines). The NMTO energy points En

spanning the region of interest are shown on the right-hand side. Right panel: The tight-binding
bands obtained with the hopping interactions shown in Table. 3.1 (in dashed lines) compared with
downfolded bands (in solid lines).

Ref. [6].

For comparison, in Table 3.1 we reproduce the results for the Cu-2252(Cl) compound

from Ref. [6]. The bond lengths corresponding to each hopping element have been also

tabulated. For the dominant, intratetrahedral nearest neighbor interaction, t1, we observe

that while the bond length is decreased by only 2.5% for Cu-45124(Cl) compared to Cu-

2252(Cl), t1 is reduced by as much as 22% due to a smaller superexchange path angle in

Cu-45124(Cl) (∠ Cu-O(2)-Cu = 105.7◦ for Cu-45124(Cl) and ∠ Cu-O(1)-Cu= 109.8◦ for

Cu-2252(Cl)). The intratetrahedral hopping t2 which was weak for Cu-2252(Cl)—a fact

also supported by neutron diffraction [10]—remains weak for Cu-45124(Cl). The in-plane

intertetrahedral hopping tx, remains in magnitude similar to its analog in Cu-2252(Cl) while

other in-plane intertetrahedral hoppings like ta and tr get suppressed. The out-of-plane,

intertetrahedral hopping, tc remains more or less the same as in Cu-2252(Cl), while the

tz hopping increases by a factor of two. The most remarkable change is observed for the

diagonal hopping, td, which is reduced to 7 meV in Cu-45124(Cl) compared to a value

of 80 meV in the Cu-2252(Cl) compound. This reduction however is not caused by the

elongation of the bond lengths due to the insertion of the Te(1)O4 group in Cu-45124(Cl),

as was suggested in Ref. [17]. We reveal the origin of this marked difference in the following

in terms of a detailed analysis of the involved hopping paths.
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Figure 3.6: Effective orbital corresponding to massively downfolded Cu-dx2−y2 calculation
viewed in two different planes. Plotted are the orbital shapes (constant-amplitude surfaces) with
lobes of opposite signs colored as red and blue. The dx2−y2 orbital is defined with the choice of
the local coordinate system with the y axis pointing along Cu–O(3) and the x axis pointing along
the Cu–Cl bond within the square plane.

The tight-binding (TB) bands, constructed out of the hopping parameters tabulated in

Table 3.1 are shown on the right panel of Fig. 3.5 in comparison to downfolded bands.

The TB bands compare satisfactorily with the downfolded bands. Omission of long-ranged

interactions such as tc and tr deteriorates the agreement of the TB bands with the down-

folded bands, proving the essential need for inclusion of long-ranged interactions in the

correct description of this compound.

3.5 Interaction pathways

It was pointed out in Ref. [6] that Cl-p degrees of freedom play a crucial role in the

renormalization process of the effective Cu–Cu hopping. Keeping this fact in mind, we

carried out downfolding calculations where the Cl-p degrees of freedom have been kept

active in addition to Cu-dx2−y2 , so as to define a basis consisting of Cu-dx2−y2 and Cl-p. The

Cu-Cu hopping interactions extracted out of such calculation are tabulated in Table 3.2. For

comparison, we show the results for Cu-2252(Cl) reproduced from Ref. [6]. The crucial role

of hopping paths involving Cl-p is evident by comparing the hopping interactions between the

massively downfolded Cu-dx2−y2-only calculation and the Cu-dx2−y2 + Cl-p calculation. The
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Cu-45124(Cl) Cu-2252(Cl)
Bond length Interaction Bond length Interaction

t1 3.147 76 3.229 98
t2 3.523 4 3.591 0
tx 5.539 12 4.163 –10
ta 6.180 15 6.021 –29
td 7.834 7 8.033 –80
tr 8.251 18 9.048 –48
tz 5.063 24 5.015 12
tc 6.332 –48 6.320 –45

Table 3.1: Cu–Cu hopping parameters corresponding to the massively downfolded Cu-dx2−y2

Hamiltonian. The bond lengths are in Å and the hopping interaction strengths are in meV
corresponding to hoppings shown in Figs. 3.1 and 3.2. The values for Cu-2252(Cl) have
been reproduced from Ref. [6].

Cu-45124(Cl) Cu-2252(Cl)
Cu Cu+Cl Cu Cu+Cl

t1 76 82 98 181
t2 4 –117 0 –132
tx 12 42 –10 –14
ta 15 –39 –29 8
td 7 9 –80 8
tr 18 –11 –48 –72
tz 24 27 12 33
tc –48 –15 –45 –19

Table 3.2: TB parameters in meV corresponding to two sets of calculations. Set-1: Mas-
sively downfolded Cu-dx2−y2 , Set-2: minimal set consisting of Cl-p and Cu-dx2−y2 degrees
of freedom (Cu+Cl downfolding). The numbers for Cu-2252(Cl) have been reproduced
from Ref. [6]

former includes the renormalization due to Cl-p’s while the latter does not. While the pattern

of renormalization remains essentially the same for the intratetrahedral hopping t2 and the

intertetrahedral out-of-plane hopping tc, it is quite different for intertetrahedral hoppings

like tx, ta, td, tr and tz which involve pathways via Cl atoms belonging to two different Cu4

tetrahedra. The most significant change happens for the in-plane intertetrahedral diagonal

hopping, td. The bare hopping strength of td in absence of the renormalization effect of Cl-p

is more or less the same between the two compounds (8 meV for Cu-2252(Cl) and 9 meV for

Cu-45124(Cl)). However, while a large renormalization is observed for Cu-2252(Cl) when
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Figure 3.7: Overlap between Cu-dx2−y2 downfolded NMTOs, placed at two Cu sites situated
at in-plane intertetrahedral, diagonal positions. Opposite signed lobes of the orbitals are colored
as blue or violet and red or orange.

integrating out the Cl-p degrees of freedom, such renormalization is practically absent

in Cu-45124(Cl). This difference is caused—as pointed out previously—by the different

alignment of the Cu-Cl bonds belonging to neighboring Cu4 tetrahedra which are parallel to

each other in Cu-45124(Cl) while in Cu-2252(Cl) they point to each other. This makes the

intertetrahedral Cl-p–Cl-p bonding in Cu-45124(Cl) of ppπ type as opposed to the Cu-

2252(Cl) case, where the Cl-p–Cl-p bonding was of ppσ type. This is nicely demonstrated

in the Wannier function plot (see Fig. 3.7), where the effective Cu-dx2−y2 like Wannier

orbitals are placed at the Cu sites at in-plane diagonal positions. The overlap between

the two orbitals provides a rough estimate of the strength of the hopping matrix elements.

In the case of Cu-2252(Cl), the Cl-p tails from two Cu sites belonging to two different

Cu4 tetrahedra overlap to a large extend due to direct alignment providing a Cl-p–Cl-p

ppσ bonding which mediates the Cu–Cu bonding between different Cu4 tetrahedra. For

Cu-45124(Cl), in contrast, the Cl-p tails from different Cu sites belonging to two different

Cu4 tetrahedra have practically negligible contribution in the effective Cu–Cu bonding due

to misalignment of the Cl-p tails.

The nature of the discussed interaction paths plays a crucial role in the magnetic prop-

erties of this material. Starting from the hopping parameters, t’s, the exchange integrals,

J ’s, for antiferromagnetic superexchange paths may be estimated by making use of the

expression J ≈ 4t2/U . While this is a valid approach for cases like the t1 and t2 interaction

paths, in general for more complicated paths this expression is not anymore precise and one
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has to use more involved estimations of the exchange coupling constants. Nevertheless,

already the knowledge of the hopping parameters gives us the clue about the important

interaction paths. The drastic reduction of the in-plane td and to a lesser extent of ta

and the longer-ranged tr, in Cu-45124(Cl) compared to Cu-2252(Cl), indicate an overall

weakening of the intertetrahedral coupling in the Cu-45124(Cl) compound with respect to

Cu-2252(Cl) and therefore if the system orders at low temperatures, the ordering should

occur at a lower TN than in Cu-2252(Cl), as observed experimentally [17]. The spin order-

ing patterns will be also strongly influenced by the change of interaction paths, especially

by the near absence of the td and reduction of the ta path (we refer to the discussion in

Ref. [13]) which places the system in the limit of weakly coupled tetrahedra. Also the

reduction by 22% of the t1 value implies a smaller intratetrahedron exchange coupling J1

than in Cu-2252(Cl). By considering J ≈ 4t2/U , with U=4 eV we obtain as exchange cou-

pling constants J1 ≈ 5.8 meV = 67 K and J2 ≈ 0.02 meV = 0.2 K in comparison with

the values J1 = 2.84 meV = 32.9 K and J2 = 1.58 meV = 18.4 K obtained by fitting

the susceptibility of a model of independent tetrahedra to the experimental data [17]. The

ratio of J2/J1 is largely overestimated in the fitting, presumably because of the neglect of

the inter-tetrahedral interactions.

3.6 Br System

In an attempt to predict the properties of the not yet synthesized Cu4Te5O12Br4 (Cu-

45124(Br)) and motivated by the discussed proximity to a quantum critical behavior of

the recently studied Cu2Te2O5Br2 (Cu-2252(Br)), we have investigated the electronic and

magnetic properties of the ab initio relaxed structure Cu-45124(Br) obtained from first

principles calculations. In order to obtain a theoretical prediction of the Cu-45124(Br)

crystal structure, we substituted Cl by Br in the original Cu-45124(Cl) structure and we

relaxed the volume and internal coordinates by performing Car-Parrinello ab initio molecular

dynamics (AIMD) calculations [20] with a projector augmented wave (PAW) basis set [21].

This procedure has proven to be very suitable for predicting reliable crystal structures [22].

For Cu-45124(Br) we assumed the same tetragonal space group P4/n (No. 85) as for

Cu-45124(Cl). Of the seven atoms in the primitive cell, only Te(1) is in Wyckoff position

2c, while all others [Te(2), Cu, Br, O(1), O(2), O(3)] are in position 8g. We thus have

19 degrees of freedom, but as the AIMD relaxation is done in the conventional cell, we

need 131 constraints for the 50 atoms in order to preserve the symmetry. We verified

convergence of our structure relaxation not only with the help of the forces but we checked

that each of the 19 independent coordinates has converged. This is especially important

in this structure as we find that the relaxation happens in two steps: First, immediately
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x y z
Te(1) 0.25 0.25 0.37660383
Te(2) 0.67370804 0.018727271 0.87086473
Cu 0.75587933 0.40510264 0.34817424
Br 0.89355065 0.56680922 0.32307512
O(1) 0.29531785 0.40609792 0.23273845
O(2) 0.28384154 0.87238649 0.36101169
O(3) 0.291597 0.58080843 0.93893775

Table 3.3: Fractional coordinates obtained by AIMD of the relaxed Cu-45124(Br).

after the Br atoms introduced into the Cl positions, they rearrange, increasing their bond

distance to the Cu atoms which are the nearest neighbors. This Cu–Br repulsion makes an

adjustment of the O(1) positions next to Br and the O(2) and O(3) positions next to Cu

necessary. However, in course of further AIMD iterations, while the Br atom moves further

and finds a relatively favorable position, some changes to Cu and O(1)–O(3) coordinates

are actually reversed. Thus, the structure immediately following the first fast rearrangement

would have produced quite different interactions strengths than the final relaxed structure

given in Table 3.3. As would be expected from the different radii of Br and Cl atoms, we

find the largest adjustments in the Br atom positions which change by 0.16 Å during the

relaxation. The other changes are 0.05 Å for Te(1), 0.04 Å for Te(2), 0.04 Å for Cu, 0.10 Å

for O(1), 0.04 Å for O(2) and 0.07 Å for O(3). While the volume of the Cu-45124(Br)

structure shows a negligible change with respect to the volume of Cu-45124(Cl), appreciable

changes in bond lengths and angles are observed. The Cu–O(2) distance which alternates

between 1.94 Å and 2.01 Å in Cu-45124(Cl), becomes 1.91 Å and 2.01 Å in Cu-45124(Br).

The Cu–O(3) distance is slightly smaller at 1.90 Å [from 1.91 Å in Cu-45124(Cl)]. The

Cu-O(2)-Cu angle changes from 105.7◦ in Cu-45124(Cl) to 107.2◦ in Cu-45124(Br), while

the O-Cu-O angle stays nearly constant at 87.0◦ [87.1◦ in Cu-45124(Cl)]. While the Cu-

Cl distance is 2.24 Å, the Cu–Br distance 2.42 Å. Finally, the Cl–O(1) distances alternate

between 3.27 Å and 3.40 Å while the Br–O(1) distances are 3.22 Å and 3.55 Å. In Table 3.3

we present the relaxed coordinates of Cu-45124(Br).

We performed NMTO-downfolding for this system and in Tables 3.4 and 3.5 we present

the bond distance and hopping values together with those of [Cu-2252(Br)]. Both a Cu-

dx2−y2 and a Cu-dx2−y2+Br-p downfolding were performed.

Cu-45124(Br) shows the same trend as Cu-45124(Cl) regarding the intertetrahedral hop-

ping td, namely the near absence of Cu–Cu interaction along this path. The rest of in-plane

intertetrahedral hopping paths in Cu-45124(Br) are a bit larger than in Cu-45124(Cl) but,

except for tx, they are smaller than in Cu-2252(Br). From the knowledge of the previous
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Cu-45124(Br) Cu-2252(Br)
Bond length Interaction Bond length Interaction

t1 3.147 75 3.195 80
t2 3.522 0 3.543 4
tx 5.535 23 4.385 –16
ta 6.248 20 6.289 –30
td 7.829 3 8.439 –73
tr 8.251 –29 9.130 –35
tz 5.064 19 5.059 11
tc 6.332 –39 6.378 –48

Table 3.4: Cu-Cu hopping parameters corresponding to the massively downfolded Cu-dx2−y2

Hamiltonian. The bond lengths are in Å and the hopping interaction strengths in meV
corresponding to hoppings shown in Figs. 3.1 and 3.2. The numbers for Cu-2252(Br) has
been reproduced from Ref. [6].

Cu-45124(Br) Cu-2252(Br)
Cu Cu+Br Cu Cu+Br

t1 75 106 80 155
t2 0 –60 4 –156
tx 23 –15 –16 –10
ta 20 –16 –30 5
td 3 11 –73 8
tr –29 –16 –35 –62
tz 19 68 11 34
tc –39 –53 –48 –26

Table 3.5: Cu–Cu hopping parameters in meV corresponding to two sets of calculations.
Set-1: Massively downfolded Cu-dx2−y2, Set-2: Minimal set consisting of Br-p and Cu-
dx2−y2 degrees of freedom (Cu+Br downfolding). The numbers for Cu-2252(Br) have been
reproduced from Ref. [6].

systems, a phase transition to an ordered state is also to be expected for this system at low

temperatures.

An important issue to be mentioned at this point is the value of the intratetrahedron

ratio t2/t1 in all the compounds discussed here. Large values of this ratio can be related

to an enhancement of intratetrahedron frustration, what has been already discussed for

Cu-2252(Br) [6]. Cu-2252(Br) is found to have a small but nonzero t2 in comparison to

its value for Cu-2252(Cl), where the t2 hopping path is basically zero, mainly due to the

Cl renormalization. The new set of systems, i.e the synthesized Cu-45124(Cl) and the
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ab initio computer designed Cu-45124(Br) seem to behave in the opposite way. While

Cu-45124(Cl) has a small but nonzero t2, Cu-45124(Br) relaxes into a structure where

the t2 path is completely renormalized to zero by the hybridization with the Br ions (see

Table 3.5) in the square planar configuration. Though we found an interesting transient

structure for Cu-45124(Br) with a moderate intratetrahedron t2/t1, this doesn’t seem to

be the energetically favored structure within the AIMD approach.

Finally, we note that the value of the ab initio calculated hopping parameters is very

susceptible to small changes of distances and angles between the atoms. Our AIMD cal-

culations were performed within the GGA approximation. Consideration of other exchange

correlation potentials may change slightly the relaxed structure, which could be important

especially for the intratetrahedron hopping paths, where changes of 0.02 to 0.03 Å in the

distance between Cu and O(2) and of 2.9◦ in the Cu-O(2)-Cu angle are decisive for the

variation of the hopping parameters.

3.7 Summary

To conclude, we have made a comparative study between the spin tetrahedron system

Cu2Te2O5Cl2 and a recently synthesized compound Cu4Te5O12Cl4 in terms of the micro-

scopic analysis of the electronic structure. Our study shows that although the basic nature

of the interactions remains the same, there is a drastic reduction of the in-plane intertetra-

hedral diagonal interaction in comparison to the case of Cu2Te2O5Cl2 where this diagonal

interaction was estimated to be nearly as strong as the Cu4 intratetrahedral nearest neigh-

bor interaction t1. We show that the origin of this reduction is due to subtle changes in

the crystal structure of Cu4Te5O12Cl4 which causes Cu–Cl bonds belonging to different Cu4

tetrahedra to align in parallel in the Cu4Te5O12Cl4 compound rather than pointing towards

each other as was the case in Cu2Te2O5Cl2. This reduction of the in-plane diagonal hop-

ping in turn increases the importance of the out-of-plane hopping to the extent that some

intertetrahedral hoppings along [001] (tc) are even about three times stronger than those

within the plane.

In absence of the, yet to be synthesized, Cu4Te5O12Br4 and motivated by the more

anomalous properties observed in the Br analog to Cu2Te2O5Cl2, we have theoretically

derived the hypothetical crystal structure of Cu4Te5O12Br4 by performing a geometry re-

laxation in the framework of ab initio molecular dynamics. We have analyzed the electronic

properties of this system within the NMTO downfolding procedure. We observe that, while

the overall electronic and magnetic behavior seems to be similar to its Cl sister compound,

this computer designed Br system shows (except for td) a stronger in-plane intertetrahedron

interaction than the Cl system—an effect that was also observed in the comparison between
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Cu2Te2O5Br2 and Cu2Te2O5Cl2. However we don’t observe any noticeable effect on the

intratetrahedron frustration in the final relaxed Cu4Te5O12Br4 structure.
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4 Electronic structure and microscopic

model of V2GeO4F2—a quantum

spin system with S = 1∗

4.1 Introduction

In this section, we take up the case of vanadium oxide fluoride system, namely V2GeO4F2

which has recently been synthesized [1]. The nominal valence of V ion in this compound

is 3+ which puts this system in the category of S=1 system. The preliminary suscepti-

bility measurement indicates the basic exchange interactions to be of antiferromagnetic

nature and having the signature of low-dimensional behavior. The compound, therefore

is a promising candidate for low-dimensional QSS. We present the LDA electronic struc-

ture of the compound, and starting from such description we derive V-t2g only low-energy,

few-orbital Hamiltonian by means of NMTO-downfolding calculations. We also present

the quantitative estimates of the dominant exchange interactions and infer the possible

spin-model based on those estimates.

4.2 Crystal structure

V2GeO4F2 occurs in primitive orthorhombic space group Pnma with four formula unit in

the unit cell and lattice constants, a = 9.336 Å, b = 8.898 Å and c = 4.912 Å [1]. The

immediate surrounding of V3+ ion is constituted of two F2− ions and four O2− ions giving rise

to a distorted octahedral geometry with one short V–F, one intermediate V–F and four long

V–O bonds (see Fig. 4.1 (a)). The F atom belonging to the short V–F distance occupies the

apical position of the octahedra, pointed approximately along the crystallographic c-axis,

while the other F belongs to the approximate ab plane. There are three different types of

O atoms, O1, O2 and O3 as marked in Fig. 4.1. One of the O3 atoms occupies the second

apical position and another goes in the plane. O1 and O2 occupies the other two positions

∗This work has been published in J. Phys.: Condens. Matter 19, 296206 (2007)
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Figure 4.1: (a) The octahedral surrounding of V3+ ion consisting of four O-s and two F-s.
Various bond angles are marked in the figure. The various bond lengths, in clock wise order starting
from V–O1, are given by V–O1=1.990 Å, V–O2=1.998 Å, V–O3(1)=1.996 Å, V–O3(2)=2.014 Å,
V–F(1)=1.928 Å and V–F(2)=1.864 Å. (b) Projection of zig-zag chains of VO4F2 octahedra.

in the plane. The nearest-neighbor (NN) VO4F2 octahedra edge-share via O1–O2 and

form a pair, oriented along the crystallographic b-direction. The second-nearest-neighbor

VO4F2 octahedra also edge-share via O3–O3, thereby giving rise zig-zag chain like structure

of VO4F2 octahedra of composition VO4F2, which is connected to next zig-zag chain by

means of corner-sharing via the plane F (see Fig. 4.1(b)). The Ge4+ ion is co-ordinated by

four oxygen atoms giving rise to GeO4 tetrahedra which sit in the hollow formed between

V2O6F4 units. The co-ordination of GeO4 tetrahedra with VO4F2 octahedra via the corner-

shared O atoms gives rise to a three-dimensional network (see Fig. 4.2) with no direct

connection between two VO4F2 octahedra along the crystallographic c-direction.

4.3 LDA Electronic structure

The self-consistent electronic structure calculation within the framework of local density

approximation (LDA) of density functional theory (DFT) has been carried out in the tight-

binding linear muffin-tin orbital (TB-LMTO) basis. The basis set consisted of Ge sp, V spd,

F sp and O sp. Eight different classes of empty spheres were used to space fill the system.

The self-consistency was achieved using 64 k-points in the irreducible Brillouin zone (BZ).

The calculated band structure and the corresponding density of states are shown in Fig. 4.3.

The octahedral surrounding of anions around the V ion, splits the V d-manifold into t2g

and eg manifold. The distortion of the octahedra further splits the strict degeneracy of t2g
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Figure 4.2: Crystal structure of V2GeO4F2 showing the three-dimensional network of VO4F2

octahedra and GeO4 tetrahedra.

and eg manifolds with splitting of the order of ≈ 0.05 eV and small admixture between t2g

and eg states. This causes 24 V-t2g bands to cross the Fermi level—there are 8 V atoms

in the unit cell, each contributing three t2g bands. The V-eg dominated states lye higher

up in energy, crystal split by about 1 eV from the V-t2g bands crossing the LDA Fermi

level. The O-p and F-p dominated bands are split from the V-d manifold by a gap of about

3.5 eV and occupy energy range below –4 eV or so. The Ge dominated states appear high

up in energy and remain essentially empty. The dominant band characters spanning various

energy ranges are shown in Fig. 4.3(a) with bars. For V-d characters, the anion-based local

co-ordinate is chosen with the local ẑ-axis pointing along the short V–F bond and local

x̂-axis pointing approximately along the other V–F bond. Examining the density of states,

we see V-dominated states have contributions from both O-p and F-p. O-p contribution is
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Figure 4.3: (a) LDA band structure of V2GeO4F2. The bands are plotted along the high
symmetry points of the orthorhombic BZ, Γ (0,0,0), Z(0,0,π/c), T(0,π/b,π/c), Y(0,π/b,0),
X(π/a,0,0), S(π/a,π/b,0), R(π/a,π/b,π/c) and U(π/a,0,π/c). The zero of energy is set at
the LDA Fermi energy. The bars mark the energy regions with respective dominant orbital char-
acters. (b) LDA site and orbital-projected density of states of V2GeO4F2. The inset shows the
F-p and O-p projected density of states in the region of dominant V-t2g character.

a bit larger than F-p, which indicates somewhat larger hybridization with O than with F (see

inset of Fig. 4.3(b)). This happens due to larger on-site energy differences between V-d

and F-p, compared to that between V-d and O-p, though the V–O bonds are on average

longer than V–F bonds by about 0.1 Å.

We note that LDA predicts the system to be metallic. It is well-known that LDA fails

to describe the correct insulating ground state for strongly correlated electron system, as

is the case here. The inclusion of the missing correlation effect beyond LDA in a partially

filled V-d manifold provides the insulating description of the system. We have checked this

by treating the correlation within the LDA+U framework. Although LDA fails to provide

the correct ground state for this class of materials, it describes the bonding and chemistry

aspects correctly. This method has been highly successful in deriving the microscopic model

based on such information [2] and construction of Hubbard-like Hamiltonians by adding the

missing correlation effect to the LDA derived one-electron part. In spite of the failure of



4.4 NMTO-downfolding and the hopping interactions 55

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 Γ  Z  T  Y  G  X  S  R  U 

 E
ne

rg
y 

(e
V

)

                                        

E0    

E1    

Figure 4.4: Downfolded t2g (solid lines) bands of V2GeO4F2 in comparison with LDA all-
band structure (dotted lines). The zero of the energy is set at the LDA Fermi energy. E0 and E1
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LDA in prediction of correct ground state, the computed one electron part is found to be

surprising robust and gives a very good account of the chemical aspect of even a correlated

insulator, as is the case in discussion. Extraction of the essential LDA information, however

needs filtering of the full LDA details. In the following, we applied the N-th order muffin-

tin orbital (NMTO) based downfolding technique, which has been designed to serve this

purpose.

4.4 NMTO-downfolding and the hopping interactions

For application of NMTO-downfolding technique to the present case, we generate the few-

band, downfolded Hamiltonian constructed out of effective V-t2g orbitals by integrating out

all the degrees of freedom associated with Ge, O and F, and also the eg states of V. This

choice is driven by the fact that the vanadium is nominally in V3+ state with two electrons

in the t2g manifold. Therefore these are the bands that appear close to Fermi energy
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(i, j)→ Dimer intn. Intn. via O Intn. via F
(m′, m)↓ (0–1) (0–2) (0–3)

xy, xy 296 –68 37
yz, yz 58 –177 16
xz, xz –67 –79 –114
xy, yz –56 –49 –125
yz, xy 56 49 1
xy, xz –73 125 43
xz, xy –73 125 15
yz, xz –107 –23 16
xz, yz 107 23 –116

Table 4.1: Hopping interactions, ti,jm,m′ in meV between m and m′ orbitals situated at V sites
belonging to the central octahedra, marked as 0, and the neighboring octahedra marked as
1, 2 and 3 (see Fig. 4.5).

and contribute in defining the low-energy Hamiltonian. The downfolded band-structure, in

comparison with full LDA band structure, is shown in Fig. 4.4. With choice of two energy

points of expansion, marked as E0 and E1 in the figure 4.4, the downfolded bands are

indistinguishable from the full band structure within the region of interest. This indicates

well convergence of the downfolded t2g bands which in the present case form an isolated

set of bands. The underlying NMTOs, therefore are the corresponding Wannier functions.

In Fig. 4.5, we show the three t2g Wannier functions which have the central xy, yz or

xz character defined in the local co-ordinate system specified earlier, and have tails shaped

according to integrated out O-p or F-p character. Shown are the orbital shapes with two

different lobes colored differently. We note the pdπ antibonds formed between V-t2g and

O-p, and V-t2g and F-p, with somewhat stronger weights at O sites compared to that

at F sites in conformity with the conclusions drawn from density of states plot. We also

note non-negligible weight of the tails sitting at neighboring V sites. The tails sitting at

neighboring V sites are shaped according to V-eg like symmetry that occurs due to the

distorted geometry of VO4F2 octahedra and the resultant mixing between t2g and eg. The

quantitative estimates of various hopping interactions, ti,jm,m′ , between the orbital m at the

V site, i, belonging to the central VO4F2 octahedra, and the orbital m′ at the V sites j’s,

belonging to neighboring VO4F2 octahedra marked as 1, 2, 3 in Fig. 4.5 (m and m′ run from

1 to 3, with |1〉 ≡ xy, |2〉 ≡ yz and |3〉 ≡ xz) are listed in Table. 4.1. We consider only the

dominant V–V interactions, namely the nearest neighbor (NN) V–V dimer interaction that

proceeds via O1 and O2, the second-nearest-neighbor V–V interaction that proceed via two
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Figure 4.5: t2g NMTOs for V2GeO4F2. Shown are the orbital shapes, with the positive
and negative lobes colored with red and yellow. The neighboring octahedra surrounding the
central octahedra (marked as 0) are numbered as follows: the NN octahedra edge sharing with
the central octahedra via O1 and O2 is marked as 1, the 2NN octahedra edge sharing with the
central octahedra via O3s is marked as 2 and the 3NN octahedra corner sharing with the central
octahedra via F is marked as 3. The local co-ordinate system used to define the xy, xz and
yz orbitals is shown in the first figure. The Ge atoms have been omitted from the structure for
clarity.

O3 atoms, and the third-nearest-neighbor V–V between two VO4F2 octahedra that corner

share via the F atom. Rest of the interactions are order of magnitude smaller. Examining

the shapes of the downfolded xy, yz and xz Wannier functions, we conclude the NN V-

V interaction has to be strongest, contributed primarily by V-xy – V-xy exchange path,

while the 2NN V–V interaction is contributed primarily by V-yz – V-yz exchange path

and the 3NN V–V interaction is contributed primarily by V-xz – V-xz. The real-space

representation of the downfolded Hamiltonian in the basis of Wannier functions, listed in
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Table. 4.1 reveal also strong contributions arising from inter-orbital hoppings between V-yz

and V-xz for NN, between V-xy and V-xz for 2NN, and between V-xy and V-yz, and V-xz

and V-yz for 3NN.

4.5 Magnetic exchange interactions and the

microscopic model

Starting from the t2g Hubbard Hamiltonian given by, HLDA
t2g ,RR′ + U

t2g

R=R′ , where U is the

on-site Coulomb repulsion, one may derive the super-exchange (SE) Hamiltonian, which

plugging in various hopping interactions, provides the estimates of the magnetic interaction

J ij between V sites i and j. In deriving such an expression, we assume that the ground state

is fully occupied by electrons in state |1〉 and |2〉 as confirmed by our LDA+U calculations.

Following the standard approach of second order perturbation, since the hopping interaction

involves only two sites in the process of hopping, the difference between the excited state

|β ⊃ and the zero-th order ground state |α ⊃ is only in these two sites. For both sites, the

atomic |α〉 is a two-electron state, while one of the atomic |β〉 state is one-electron and

the other is three-electron state. The energy of the ground state configuration is therefore

given by Eα = 2(U2−JH), where U2 is the Coulomb repulsion between electrons belonging

to different orbitals and JH is the Hund’s rule coupling. U , the Coulomb repulsion between

electrons in the same orbital is U = U2+2JH . On the other hand, the energy of the excited

state Eβ consists only of three-electron site contribution, as the one-electron site does not

contribute to the subspace of doubly occupied sites.

Considering the full, multiplet structure of excited states |βλ ⊃ with three-electron sites,

it is possible to show that there are three distinct excited energies, 3(U2 − JH), 3U2 and

3U2 + 2JH [3]. Considering the various possible matrix elements between the ground state

configurations and excited states, and the energy differences between the Neél state and

the ferromagnetic state as done in Ref. [4] for the case of t2g manifold occupied by one

electron, one gets

J ij
SE =

[

(tij11)
2 + (tij22)

2 + (tij12)
2 + (tij21)

2

][

1

U + 2JH
+

1

U

]

+

[

(tij13)
2 + (tij31)

2 + (tij23)
2 + (tij32)

2

][

− 1/3

U − 3JH
+

1/3

U

]

In the above we have neglected the crystal field splitting ∆ between different m and

m′ level which is about 0.012 U . Putting values of various tijmm′ ’s and using U = 4 eV

and JH = 0.8 eV as appropriate for an early transition metal like V, gives all the exchange

interactions to be of antiferromagnetic nature (see Table 4.2) in agreement with the pre-

liminary susceptibility measurement [1]. The strongest interaction, J1, (Jij , i = 0, j = 1)
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i, j Jij (meV)
0–1 38

(dimer intn.)
0–2 13

(intn. via O)
0–3 5

(intn. via F)

Table 4.2: Magnetic exchange interaction, Jij, between V3+ ions belonging to the central
octahedra (marked as 0) and the neighboring octahedra marked as 1, 2 and 3 (see Fig. 4.5).

is given by nearest neighbor pair, followed by the 2NN interaction, J2, (Jij , i = 0, j = 2)

which connects two V ions via two O3 atoms and is about one-third of the strongest NN

interaction. The 3NN interaction, J3, (Jij, i = 0, j = 3) that proceeds via the F atom

is weak—1/8th of the NN V pair interaction. The above study therefore leads to a de-

scription of V2GeO4F2 as that of a weakly coupled, S=1 alternating chain compound with

alternation parameter ≈ 0.3, where the alternation parameter is given by the ratio J2/J1.

Antiferromagnetic (AF) S=1 spin chains gives rise to rather interesting properties. For

uniform chains the ground state is an exotic quantum spin liquid with only short-range spin

correlation and a gap in the excitation spectra, known as Haldane gap [5]. Antiferromagnetic

S=1 chains that are not uniform, but instead feature alternating strong and weak bonds, are

also gaped spin liquids except at quantum critical point [6]. However for sufficiently strong

alternation, as may possibly be the case in the present, the so-called dimerized ground state

is qualitatively distinct from Haldane state. These differences are significant yet subtle [7].

In literature, there have been considerable interest in distinction of behavior of two such

systems like Ni(C6D24N4)(NO2)ClO4 [NTENP] and Ni(C5H12N2)2N3(PF6) [NDMAP] [8, 9].

It will be interesting to carry out similar studies to find out what is the nature of possible gap

in case of V2GeO4F2, which we predict to be a S=1 quasi one-dimensional bond-alternating

AF.

4.6 Conclusion

In summary, using first-principles calculations, we study the electronic properties of the

oxide-fluoride quantum spin system, V2GeO4F2 which has been synthesized recently. We

have analyzed the computed electronic structure in terms of NMTO-downfolding which

provided the effective hopping interactions between V3+ ions. Employing these estimates

of hopping interactions, we derive the magnetic exchange interactions, which defines the
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system as a weakly coupled, antiferromagnetic S=1 alternating spin chain. This forms an

interesting class of QSS. Our prediction needs to be tested in terms of rigorous experimental

study.
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5 Electronic structures and

low-dimensional magnetic properties

of the ordered rocksalt oxides

Na3Cu2SbO6 and Na2Cu2TeO6
∗

5.1 Introduction

Magnetic oxides with an ordered rocksalt structure often show low-dimensional behavior

due to either the topology of the cation ordering or to orbital ordering, especially with

Jahn-Teller active ions. For example, the thermodynamically stable form of LiMnO2 with

Pmmn symmetry has zigzag layers of Mn3+ ions and shows short-range, two-dimensional

magnetic correlations over a wide temperature range before long-range order sets in below

271 K [1]. More remarkably, the metastable form of this same material, t-Li2Mn2O4, with

I41/amd symmetry and a three-dimensional (3D) topology for the Mn3+ ions, shows only

two-dimensional spin correlations down to 2 K [2]. The material Li4MgReO6, in which

the Re6+ (S=1/2) ions are arrayed on a geometrically frustrated lattice, shows spin-glass

behavior below 12 K and not long-range order [3].

Quite recently oxides with a layered rocksalt structure, Na2Cu2TeO6 and Na3Cu2SbO6,

have been investigated [4, 5], which occur in distorted honeycomb crystal structures. Such

a lattice structure with low coordination of magnetic ions is expected to exhibit strong

magnetic fluctuations, characteristic of low-dimensional spin systems. These compounds

fall in the category of quaternary cuprate-tellurate and cuprate-antimonate which have so

far remained largely unexplored. The relationship between the two structures which has

been described before [4, 5], may be summarized as follows:

Fig. 5.1(a) and 5.1(b) show the Na3Cu2SbO6 structure viewed along the a and c axes of the

C2/m cell. Note the presence of layers of edge-sharing Cu–O and Sb–O octahedra separated

by Na+ ions. One Na+ site is vacant in the tellurate phase, so it can be considered as a

∗This work has been published in Phys. Rev. B 76, 104403 (2007)
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Figure 5.1: Edge-sharing octahedra in Na3Cu2SbO6 viewed along the a direction (a) and the
c direction (b).

defect rocksalt material. The magnetic Cu2+ ions lie in planes of composition Cu2TeO6
2−

or Cu2SbO6
3− and, due to site ordering with the Te6+ and Sb5+ ions, present a slightly

distorted honeycomb lattice topology, as shown in Fig. 5.2. There are five possible exchange

pathways within the ab plane. Two possible pathways J4 and J5 are relatively long, involving

fully occupied dz2 orbitals and, as such, their contribution is negligible. As a result, they have

not been taken into account in any subsequent analysis. The three most significant nearest-

neighbor exchange pathways are J1, J2, and J3. Depending on their signs and relative

magnitudes, the magnetic dimensionality can be 0, 1, or 2 as indicated in Table 5.1. The

magnetic susceptibility data suggests a dominant dimeric or zero-dimensional interaction.

Closer inspection indicates that an alternating linear chain model provides a somewhat
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Figure 5.2: Schematic representation of different possible Cu–Cu interaction pathways in the
ab plane. The thick solid lines denote the shortest Cu–Cu interactions, the thin solid lines show
Cu–O and Sb–O connectivity, and the dashed lines represent the shortest interchain interactions.

better fit than the dimer model [4, 5]. There exists some controversy regarding the sign of

the second-neighbor interaction J2. While one group has fit the data for Na2Cu2TeO6 using

the antiferromagnetic-antiferromagnetic (AF–AF) alternating chain model with J2 /J1 ∼
0.1 [4], Miura et al. [5] have pointed out that distinguishing between the AF–AF and AF–

ferromagnetic (AF–F) models is very difficult based only on the criterion of the fit quality.

The AF–F model does indeed provide an excellent fit with rather different parameters—for

example, J1/J2 ∼ –0.8 —for both Sb- and Te-based materials. Fits to low-temperature

heat capacity data appear to support the AF–F model [5].

In an attempt to resolve this controversy, we have carried out calculations using the

tight-binding and more accurate nth-order muffin-tin-orbital (NMTO) downfolding method

on both the Te and Sb compounds to determine the relative magnitudes of the relevant

exchange constants by providing estimates of the corresponding hopping interactions. This

is compared with experimental reinvestigation of magnetic properties which included data

up to 600 K.

5.2 Structural comparisons

A brief but detailed comparison of the salient structural details of both Na3Cu2SbO6 and

Na2Cu2TeO6 is presented in Tables 5.2 and 5.3. As the Sb5+ (0.74 Å) (Ref. [7]) ion is
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Relative interaction magnitudes Magnetic model

J2 ≈ J3 ≫ J1 2-D honeycomb
J1 = J2 ≫ J3 1-D chain
J1 > J2 ≫ J3 1-D alternating chain
J1 ≫ J2 ≈ J3 0-D dimer

Table 5.1: The different possible dimensionalities of the Cu2+ spin correlations.

slightly larger than Te6+ (0.70 Å) (Ref. [7]), there is an overall increase in cell volume, the

b axis length, and the interatomic distances within the ab plane. The distances and angles

relevant to the three identified exchange pathways J1, J2, and J3 are indicated in Table 5.3.

Na2Cu2TeO6 Na3Cu2SbO6

2× Cu–O(1) (Å) 1.978 2.000
2× Cu–O(2) (Å) 1.999 2.021
2× Cu–O(1) (Å) 2.533 2.494

Table 5.2: Some selected interatomic Cu–O distances of Na2Cu2TeO6 and Na3Cu2SbO6

(Refs. [4] and [6]).

5.3 Results

5.3.1 Tight-binding, magnetic dimer model:

In the tellurate material [4], the extended Hückel, spin dimer analysis [9] was employed.

In these computations the intersite hopping energy (∆e) is estimated using the CAESAR

package [10]. Assuming that J ∼ (∆e)2/U and that U is constant, the relative magnitude

of the various J ’s can be determined. For the antimonate system we have followed the

same procedure and the obtained results are summarized in Table 5.4 in comparison with

results for tellurate [4].
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Na2Cu2TeO6 Na3Cu2SbO6

b (Å) 8.675 8.867
V (Å3) 269.05 269.81

(Cu–Cu)[J1] (Å) 5.82 5.91
(∠Cu-O-O)[J1](deg) 139 137.2

(Cu–Cu)[J2] (Å) 2.86 2.96
(∠Cu-O-Cu)[J2](deg) 91.3 95.3

(Cu–Cu)[J3] (Å) 3.21 3.20
(∠Cu-O-Cu)[J3](deg) 90.0 89.6

Table 5.3: Some selected structural parameters of Na2Cu2TeO6 and Na3Cu2SbO6 (Refs. [4]
and [6]).

Note that in both cases, J1, which involves the longest Cu–Cu pathway, is, nonethe-

less, the largest interaction by far. Second in magnitude is J2, of order ∼0.1 of J1. J3

is much smaller, ∼0.01 of J1. Comparing the tellurate and antimonate phases the cal-

culated J1(Sb)/J1(Te) ratio is 0.54 compared to the experimental ratio of 0.59, which is

an acceptable agreement. However, the observed and calculated J1/J2 ratios are in poor

correspondence.

5.3.2 Local density approximation calculation:

It is of considerable interest to apply a more rigorous computational method to this problem,

specially the accurate NMTO-downfolding procedure as established in previous sections.

Self-consistent electronic structure calculations were carried out within the LDA frame-

work of the density functional theory (DFT) in the tight-binding linear muffin-tin-orbital

Pathway Te (∆e)2 (meV)2 Rel. Sb (∆e)2 (meV)2 Rel.

J1 10200 1 5224 1
J2 3320 0.33 295 0.06
J3 130 0.01 16 0.003

Table 5.4: (∆e)2 for the various exchange pathways in both Na2Cu2TeO6 and Na3Cu2SbO6

calculated on the spin dimer model.
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Figure 5.3: LDA band structure (top panel) and orbital-projected density of states (bottom
panel) of tellurate (left) and antimonate (right). The bands are plotted along the high symmetry
points of the monoclinic BZ. The zero-point energy is set at the LDA Fermi energy in both panels.
The energy regions with the respective dominant orbital characters are marked in the top panel.

(TB-LMTO) basis. The basis set consisted of Cu spd, Te or Sb sp, O sp, and Na s orbitals.

Five (Te) or four (Sb) different classes of empty spheres were used to space fill the system.

The band structure and corresponding density of states are shown in Fig. 5.3.

The orbital characters indicated in the figure are obtained by choosing the local coordinate

system with the local z axis pointing along the long Cu–O(1) bond and the local y axis

pointing along the short Cu–O(1) bond. The distorted octahedral environment of the Cu2+

ion sets the energy of the 3dx2−y2 orbital as the highest. Consistent with this picture, there

are two bands of dx2−y2 symmetry (there are two Cu atoms per unit cell) split off from the
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Figure 5.4: Bands obtained with massively downfolded Cu dx2−y2 basis (in thick lines)
compared to full LDA band structure (in thin dashed lines) for tellurate (left panel) and antimonate
(right panel). The NMTO energy points En spanning the region of interest are shown on the
right-hand side.

other bands, spanning an energy range from –0.4 eV to 0.2 eV with the zero energy set at

the LDA Fermi level. The energy bands dominated by other d characters, such as dxy, dxz,

dyz, and dz2, are located within the energy range –2.4 and –1.2 eV, separated by a gap of

∼0.8 eV from the dx2−y2 bands. The O p-dominated bands appear at ∼–6 eV to –3 eV.

There is only a negligible contribution from Na states to the bands crossing the Fermi level

and a small but non-negligible mixing from Te (Sb) states as is more evident in the plot of

effective NMTOs to be presented in Fig. 5.5.

Note that in the low-energy range, the LDA calculation leads to two almost half-filled

bands—i.e., to a metallic state. It is well known that the LDA fails to describe the correct

insulating ground state for strongly correlated electron systems, as is the case here. The

inclusion of the missing correlation beyond the LDA provides the insulating ground state.

This was checked by treating the correlation within the LDA+U framework. While the

LDA fails to provide the correct ground state for these materials, it describes the chemical

bonding aspects correctly and is highly successful in deriving the microscopic model.

The few-band, downfolded Hamiltonian was constructed from the effective Cu dx2−y2 by

integrating out all degrees of freedom associated with Te, Na, and O and the Cu t2g and

dz2 states. This choice is driven by the fact that the Cu2+ state is described by a half-filled

dx2−y2 orbital. Therefore, these are the bands which appear close to the Fermi level and

dominate the low-energy Hamiltonian. The downfolded band structure is shown in Fig. 5.4

(left panel) along with the full LDA result.

With choice of two energy points of expansion, marked as E0 and E1 in the Fig. 5.4,
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Figure 5.5: The effective orbitals corresponding to the downfolded Cu dx2−y2 calculations
viewed for tellurate (left) and antimonate (right). Plotted are orbital shapes (constant-amplitude
surfaces) with lobes of opposite signs colored as red and yellow. The dx2−y2 orbital is defined with
the choice of the local coordinate system with the y axis pointing along the short Cu–O(1) bond
and the x axis pointing along the Cu–O(2) bond within the square plane. Green and gray atoms
stand for Cu and Te(Sb) respectively and brown and cyan atoms represent two inequivalent O.

the downfolded bands are indistinguishable from the full band structure within the region

of interest. This indicates excellent convergence of the downfolded dx2−y2 bands which in

the present case form an isolated set of bands. The underlying NMTOs, therefore, are the

corresponding Wannier functions which are plotted in Fig. 5.5. The central part has 3dx2−y2

symmetry with the choice of local coordinate system as stated above, while the tails are

shaped according to O p symmetry to take into account hybridization effects. Shown are

the orbital shapes with two different lobes colored differently. We note the pdσ antibonds

formed between Cu dx2−y2 and O p. A careful look at the O p-like tails reveals that one of

the lobes is enlarged with respect to the other and bends towards the Te/Sb site which in

turn points towards the non-negligible contribution of Te/ Sb, in providing the mediating

pathway. This feature is more pronounced for Na2Cu2TeO6 than for Na3Cu2SbO6, giving

rise to a higher value of J1 in the case of the Te compound compared to that of the Sb

compound as discussed in the following.

The real-space representation of the downfolded Hamiltonian, HTB =
∑

ij tij
(

ĉi
†ĉj +

h.c.
)

, provides the information of the effective hopping interaction tij , between the Cu2+

ions at sites i and j. Such estimates of the effective hopping integrals are useful in defining

the underlying low-energy magnetic model, in the sense that the effective Cu–Cu hopping

integral t can be related to the Cu–Cu magnetic exchange coupling interaction J via a

second-order perturbative treatment within the framework of a many-body Hubbard-like
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Pathway Te t (meV) Te t2 (meV)2 Rel. Sb t (meV) Sb t2 (meV)2 Rel.

J1 139 19321 1 124 15376 1
J2 14 196 0.01 45 2025 0.13
J3 38 1444 0.07 31 961 0.06

Table 5.5: Intersite hopping energies calculated from the NMTO downfolding model for
Na2Cu2TeO6 and Na3Cu2SbO6.

model. Assuming that these couplings are AF and neglecting the F contributions, JAFM

can be estimated as ∼ 4t2/U where U is the effective on-site Coulomb repulsion on the Cu

site.

Though such an approach may be quite legitimate for the exchange interaction J1 with

the Cu-O-O angle close to 140◦, for interactions like J2 and J3 where Cu-O-Cu angles are

reduced considerably from 180◦, one needs to be more careful. For this purpose, we have

carried out total energy calculations with different spin arrangements at various Cu sites.

Comparison of the total energies with AF spin alignment between Cu sites connected via

J2 pathways to those for F spin alignment shows the former to be lower in energy, thus

proving J2 to be AF, unequivocally.

In Table 5.5, we present the values of the effective hopping integrals, tj , for the relevant

magnetic exchange pathways. We also include t2j by which the relative strengths of the

various magnetic interactions can be obtained as J ∼ t2/U . These results can be compared

directly with those of Table 5.4 obtained from the TB spin dimer analysis.

Both the TB and NMTO downfolding methods find that J1 is overwhelmingly the

strongest exchange pathway for both materials. The predicted J1(Sb)/J1(Te) ∼0.8 is

a bit larger than the observed ratio of ∼0.6 and, oddly, the TB spin dimer result is closer

to experiment. For the Te phase, both J2 and J3 are of the order 10−2 of J1, suggesting

that this material is close to a pure Bleaney-Bowers dimer. This is roughly consistent with

experiment (the experimental result is ∼0.1).

The calculations predict a stronger J2 interaction for the Sb phase, J2(Sb)/J1(Sb) ∼0.13,

whereas the experimental result is ∼0.4. Nonetheless, this is an improvement over the TB

calculation for which J2(Sb)/J1(Sb) is found to be ∼0.06. As well, NMTO predicts that

J2(Sb)/J1(Sb) > J2(Te)/J1(Te) which is observed experimentally, while the TB method

predicts the opposite. Perhaps surprisingly, J3(Te) > J2(Te), but both are very small

relative to J1. One also needs to remember that these estimates are obtained via a t2/U

kind of relation, which is not strictly valid for the J2 and J3 pathways.
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5.3.3 Magnetic susceptibility:

As mentioned, Miura et al. [5] have studied the magnetic behaviors of both Na2Cu2TeO6

and Na3Cu2SbO6. They have pointed out, correctly, that it is very difficult to distinguish

between the AF–AF and AF–F alternating chain models based solely on the fitting of the

low-temperature susceptibility data. Furthermore, it was argued that an analysis of the

magnetic component of the specific heat data can be used to discriminate between the

two models and these data were interpreted in favor of the AF–F model with J1 and J2 of

comparable magnitudes, α ∼–0.8. This approach is not without difficulty. In particular, the

isolation of the magnetic contribution from the total specific heat can be problematic, as a

good lattice match material is needed, given that the magnetic contribution to the specific

heat extends to rather high temperatures. For this purpose Na3Zn2SbO6 was chosen, which

is isostructural with Na3Cu2SbO6, but of course there is no static Jahn-Teller distortion at

the Zn2+ site which will influence the phonon spectrum and introduce some uncertainty

into the subtraction procedure.

Apart from these potential experimental difficulties, it should be noted that neither com-

putational method predicts a J2 which is of comparable magnitude to J1 with either sign for

both materials. There also exists a rather simple experimental test which can distinguish

between the AF–AF and AF–F linear chain models for these materials. By analysis of the

high-temperature susceptibility, the models can be compared to the mean-field result for

the Weiss temperature θc. In the high-temperature regime T >300 K, the Curie-Weiss law

is seen to describe the data very well. The relationship between the Weiss temperature and

the various exchange constants Jm is well known and given by [11]

θ =
2S(S + 1)

3kB

N
∑

m=1

zmJm, (5.1)

where θ is the Weiss constant, zm is the number of mth nearest neighbors of a given atom,

Jm is the exchange interaction between mth neighbors, and N is the number of sets of

neighbors for which Jm 6=0. For both systems with S = 1
2

and z1 = z2=1; i.e., neglecting

the J3 contribution the relationship is simplified to

θ =
J1 + J2

2kB
. (5.2)

In Table 5.6 the observed θ values are compared with those derived from Eq. (5.2) and the

J ’s obtained from the fits to the low-temperature data with both the AF–AF and AF–F

linear chain models.

Clearly, the AF–AF linear chain model is in much better agreement with the observed

Weiss temperatures for both materials as predicted by theory. In fact, the value derived

from the AF–F model for the antimonate is actually of the opposite sign to that observed.
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Na2Cu2TeO6 Na2Cu2TeO6 Na3Cu2SbO6 Na3Cu2SbO6

AF–AF AF–F AF–AF AF–F
J1/k (K)a –135 –136 –80 –83
J2/k (K)a –14 108 –31 105
θcalc (K) –75 –14 –56 11
θobs (K) –87(6) –87(6) –55(2) 55(2)

Table 5.6: Comparison of observed and calculated Curie-Weiss θ temperatures for
both the AF–AF and AF–F linear chain models for Na2Cu2TeO6 and Na3Cu2SbO6.
aNote that in Ref. [5] the exchange Hamiltonian is written as J

(

Si ·Sj

)

whereas, in Ref. [4]
and this work –2J

(

Si ·Sj

)

is used. Therefore, the J values quoted in Ref. [5] will be of the
opposite sign and of twice the magnitude as those in Ref. [4] and the present work. The
values in this table have been converted, accordingly.

5.4 Summary and Conclusions

The magnetic properties of Na3Cu2SbO6 have been investigated and compared to those

for the structurally related material Na2Cu2TeO6. Two computational methods, the tight-

binding spin dimer model and the nth-order muffin-tin-orbital downfolding method, have

been used to calculate the intersite hopping energies of the various exchange pathways.

We also used total energy calculations of different spin configurations to define the sign.

Both methods find that the dominant exchange J1 is through a Cu–O–Te(Sb)–O–Cu linear

pathway and is strongly AF. As well, J2 is found to be AF. J2/J1 is ∼ 10−2 for the Te phase

but ∼0.15 for the Sb material. These results are compared with each other and with the

experiment, and the differences are discussed. A controversy concerning whether the AF–

AF or AF–F alternating chain model is appropriate for these materials is addressed both by

computation and by experiment, specifically through measurement of the high-temperature,

T > 300 K, susceptibility and comparison of observed and calculated Weiss temperatures.

On the basis of both analyses it can be concluded that the AF–AF alternating chain is the

appropriate model for both compounds.
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6 Cu-based metalorganic systems: an

ab initio study of the electronic

structure∗

6.1 Introduction

Metalorganic compounds formed by transition metal centers bridged with organic ligands

are being intensively discussed in the context of new molecule-based magnets and electronic

materials [1, 2]. The study of these compounds has been increasing over the last decade

due to their potential application for data storage, optical switches or magnetic detectors,

to give a few examples. In the design of new metalorganic materials and in order to achieve

optimally functioning systems, it is of advantage to use ideas that have long been exploited

heavily in the fine tuning of the properties of inorganic crystals. Charge and spin densities

are routinely being adjusted in semiconductors and high-Tc superconductors by doping or

by substituting the transition metals with neighbors in the periodic table. The interest in

metalorganic materials is partly due to their modular nature. The modular setup has the

advantage of allowing the modification of relevant subunits chemically without changing

the subsequent crystal engineering. Substitution of organic groups and ligands in these

systems play the role of doping in the search for materials with desired magnetic interaction

strengths and charge carrier concentrations.

In the present work we pursue these ideas from a theoretical point of view. We consider

a computationally feasible combination of classical with quantum mechanical ab initio

tools [3] in order to design and analyze new metalorganic compounds. As an example,

we introduce systematic changes on existing metalorganic materials in order to achieve

desirable electronic or magnetic properties in the modified new structures. Such study

i)allows for a gradual understanding of the properties of these low-dimensional systems

ii)provides a guide to systematic synthesis in the laboratory.

∗This work has been published in New Journal of Physics 9, 26 (2007)
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Figure 6.1: Polymeric unit of Cu(II)-2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene (CuCCP)
(X=∅, R=H). We will consider the substitutions R=CN and R=NH2 on the central benzene ring
and the ligands X=H2O and X=NH3.

We focus our attention on the recently synthesized coordination polymer Cu(II)-2,5-

bis(pyrazol-1-yl)-1,4-dihydroxybenzene [4] (CuCCP) which, from susceptibility measure-

ments [5], has been identified as a model system for a spin-1/2 Heisenberg chain with an

antiferromagnetic exchange coupling constant of J = 21.5 K. The polymeric unit is shown

in Fig. 6.1. This compound is a good starting point to study effects of coupling strength

variation by appropriately introducing modifications in the linkers as well as changes in the

Cu coordination. Note that the coupling strength scale for this system is small compared

e.g. to inorganic Cu oxides1 [6], where the couplings are more than one order of magnitude

larger. Accordingly, in this work we will be expecting coupling strength variations in the

range of one to a few tens of meV in energy.

The Cu–Cu interaction in this compound depends on the electronic nature of the linker.

Its properties can be tuned smoothly and predictably by changing the substitution pattern R

(see Fig. 6.1) of the central benzene ring (hydroquinone), or by introduction of additional

ligands X at the Cu(II) ions. The substitution or introduction of additional ligands is

expected to bring changes in the electronic properties of the compound. For example, it

can change the magnitude of magnetic interactions between the Cu(II) centers in the spin

chain via change in the charge density in the polymeric chain. It may change the effective,

inter-chain interactions, the one-dimensional nature of the original compound may thus be

modified. It may even change the coordination and valence of the Cu(II) ions, which may

induce changes in the transport properties along the one-dimensional chain by moving away

from the Mott insulator at a half-filled Cu 3dx2−y2 orbital.

With the above ideas in mind, we first considered two possible H replacements in the

1see e.g. the case of La2CuO4 with J values greater than 1000 K.
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Short name R X

CuCCP H -

Cu(II)-NH2 NH2 -

Cu(II)-CN CN -

Cu(II)-H2O H H2O

Cu(II)-NH3 H NH3

Table 6.1: Naming convention for the substitutions and ligands on the CuCCP coordination
polymer considered in this work.

central benzene ring: an NH2 group, which acts as electron donating group, and a CN

group, which acts as electron withdrawing group (see Fig. 6.1). Furthermore, extensive

crystallization trials showed that crystallites of the Cu(II) polymer always contain lattice

defects in high concentration. In many compounds, the Cu(II) ions are coordinated by six

nitrogen or oxygen atoms instead of four ligands. The Cu(II) polymer is experimentally

crystallized in a mixture of water and ammonia solvents, and it is likely that H2O or

NH3 molecules are built into the crystal lattice. We have, therefore also considered the

introduction of additional ligands like H2O or NH3 in the Cu(II) ions in our simulation

study. In Fig. 6.1 and Table 6.1 we give an account of these modified structures.

6.2 Method

The methods used in this work, can be primarily categorized into two classes. Firstly, a class

of methods has been used for the accurate structural determination of both the parent and

the modified compounds. Once the structural aspects are decided, their electronic structures

are calculated and analyzed with another class of methods. Note that the understanding

of a complex system and design of new compounds need a combination of several different

methods, each being focused to deal with one specific aspect. In the following, we give a

brief description of all the methods that we have employed.

6.2.1 Determination of crystal structure:

In the absence of diffraction data, a method much used to a priori predict crystal structures,

is the force field technique [7–12]. While such calculations are computationally fast, they

rely on a classical ansatz and therefore miss all possible quantum mechanical effects, which

are important for the description of the electronic structure. Quantum mechanical methods,

on the other side, are computationally much more demanding, and they are, in this context,
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typically employed for two tasks: One is the local optimization after global optimization with

force field methods. This has been reported for inorganic systems like NaCl or MgF2 [13, 14]

and for simple organic compounds like glycole C2H4(OH)2 and glycerol C3H5(OH)3 [15].

Another is for secondary computations like the determination of molecular geometries,

electrostatic charges or for the calculation of intramolecular and intermolecular potential

curves [16, 17].

In the present work we used an effective way of designing reliable crystal structures

which shares the advantages of both methods, namely the fast calculations with classical

force field methods and the subsequent accurate quantum mechanical description with ab

initio methods. We first created the modified structures on the basis of crystallographic

databases [18] and the crystal structures were optimized by force field methods. In the

second step the structures were relaxed by ab initio quantum mechanical molecular dy-

namics [19] within the density functional theory (DFT) formalism until the forces on the

atoms were less than a given threshold to ensure structure stability. Our work differs from

the mentioned previous works in the sense that using this approach, we succeeded in treat-

ing materials with large unit cells (of the order of 100 atoms) and complicated electronic

structure (transition metal complexes) with sufficient accuracy.

All force field optimizations were performed using the program package Cerius2 [20].

We modified the Dreiding 2.21 [21] force field by introducing energy terms for the case of

octahedrally coordinated metal ions. For the energy minimizations we used the modified

Dreiding force field with Gasteiger [22] charges. All structural models were based on the

experimentally determined crystal structure of CuCCP [4]. The crystallographic symmetry

of the structure models was maintained in all relaxations. The position of the Cu ion

was kept fixed during all force field and quantum mechanical optimizations. The second

step of quantum mechanical relaxations were performed by Car Parrinello (CP) ab initio

molecular dynamics (AIMD) calculations [19] based on the Projector Augmented Wave

(PAW) method2 [23].

6.2.2 Electronic structure calculations:

We computed the electronic structure of the relaxed structures with LMTO/NMTO as well

as the Full Potential Linearized Augmented Plane Wave basis (FPLAPW) as implemented

in the Wien2k code [24]. Calculations were performed within the Generalized Gradient

Approximation (GGA) [25]. For FPLAPW calculations the choice of muffin-tin radii rMT,

k mesh and plane-wave cutoffs kmax were carefully tested. We considered a k mesh of

2We have performed non-spin polarized DFT calculations —in contrast to spin-polarized ones—
for the structure relaxation since the energy associated with magnetism is much smaller than the
cohesion energy and therefore, possible changes on the atomic positions due to the magnetic energy
can be assumed to be negligible.



6.3 Results 81

(8 × 6 × 5) in the irreducible Brillouin zone and a Rkmax = 3.8, which is reasonable for

systems that contain hydrogen atoms. The NMTO downfolding calculations, which rely

on the self-consistent potentials derived out of LMTO calculations, were carried out with

17 different empty spheres in addition to atomic spheres to space fill.

It is well known that LDA or GGA fails to describe the correct insulating ground state for

strongly correlated electron system, as is the case here. Introduction of missing correlation

effects in a static mean-field like treatment as is done in the so called LDA+U approach [26,

27], should give rise to the correct insulating state, as is supported by our calculations (not

shown here). In the present work we are mainly interested in estimating the effective one-

electron hopping interactions which are well described within LDA or GGA. In fact, the use

of DFT calculations to understand the chemistry of correlated materials is a well established

method [28].

Finally, in order to analyze the computed electronic structure and to extract an effective

microscopic Hamiltonian, we derived quantitatively the Cu–Cu hopping integrals within

the NMTO-downfolding technique3. Such estimates of the effective hopping integrals

are useful in defining the underlying low-energy magnetic model. More precisely, the one-

electron effective Cu–Cu hopping integral, t can be related to the Cu–Cu magnetic exchange

coupling interaction J via a second-order perturbative treatment within the framework a

many-body Hubbard-like model. Assuming that these couplings are antiferromagnetic and

neglecting ferromagnetic contributions, J can be estimated as JAFM ≈ 4t2/Ueff where Ueff

is the effective onsite Coulomb repulsion on the Cu site.

6.3 Results

6.3.1 Crystal structure:

Dinnebier et al. [4] reported the synthesis, and crystal structure determination of the

CuCCP system obtained by layering a solution of 2,5-bis(pyrazol-1-yl)-1,4-dihydroxybenzene

in CH2Cl2 with a solution of CuBr2 in concentrated aqueous ammonia. The system crys-

tallizes in the triclinic space group P 1̄ with 27 atoms per unit cell. This compound tends

to form independent polymeric chains consisting of deprotonated 2,5-bis(pyrazol-1-yl)-1,4-

dihydroxybenzene molecules bridged by Cu(II) ions with a 3d9 configuration, which corre-

sponds to a local spin 1/2. As shown in Fig. 6.2 the chain axes are oriented along the

c axis of the crystal and the copper ions are located at (1/2, 1/2, 1/2), which is a center

of symmetry of the space group P 1̄. The Cu–Cu distance along the approximate a axis

is about 5.2 Å while along the other two axes it is close to 8 Å. These Cu(II) ions are

3The calculations were checked for convergence within the two choices of basis sets (FPLAPW,
LMTO/NMTO)
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Structure a(Å) b(Å) c(Å) α(◦) β(◦) γ(◦) V (Å3)
CuCCP exp 5.172 7.959 8.230 118.221 91.520 100.148 291.47
Cu(II)-H2O 5.234 11.249 8.072 117.611 68.822 127.155 330.43
Cu(II)-NH3 5.459 11.597 8.349 118.423 68.840 130.883 350.49

Table 6.2: Lattice parameters for the experimental crystal structure CuCCP and models
Cu(II)-H2O and Cu(II)-NH3, optimized with force field methods.

coordinated in an almost square planar fashion by two (pyrazolyl) nitrogen atoms and two

oxygen atoms of the deprotonated dihydroxybenzene groups.

The crystal structure was determined from X-ray powder diffraction data; consequently

the overall structure and the arrangement of the chains are reliable, but the individual

atomic positions had an accuracy of only about 0.3 Å. A DFT analysis of the forces [24]

between the atoms shows that the experimentally determined CuCCP structure is still very

unstable with forces of the order of 100 mRyd per aB or more for some atoms. We have

therefore relaxed the atomic positions keeping the Cu position fixed with the AIMD method

described in section 6.2.1.

The Cu(II)-NH2 polymer and the Cu(II)-CN polymer were generated from the CuCCP

polymer, by substituting the two hydrogen atoms of the benzene rings by amino (NH2)

or cyano (CN) groups, respectively (see Fig. 6.1 and Table 6.1). The Cu(II)-H2O (Cu(II)-

NH3) polymer was constructed from the CuCCP polymer by adding two water molecules

(ammonia molecules) as additional ligands to the Cu(II) ion (see Fig. 6.1 and Table 6.1).

In the original crystal structure the chains are quite densely stacked. The introduction

of the H2O (or NH3) molecules would either lead to unrealistically short contacts to the

neighboring chains, or to a considerable increase of the distances between the chains,

resulting in an unrealistically loosely packed structure. Therefore the crystal structures of

the Cu(II)-H2O and Cu(II)-NH3 polymers were fully optimized, including an optimization

of the lattice parameters. Moreover, in order to achieve a better packing of the Cu(II)

polymer chains with a favorable lattice energy, the Cu(II) chains shifted in the optimization

process both sidewards as well as along the chain direction with respect to each other. The

resulting unit cell parameters are shown in Table 6.2.

All the modified structures were relaxed in the second step with the AIMD method

until the forces on the atoms were sufficiently small to ensure stability of the quantum

mechanical calculations. In the Appendix we present the relaxed structural data of all the

modified structures.
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Figure 6.2: Crystal structure of the CuCCP polymer in two different orientations. The unit
cell is shown in the figures (vectors a, b, and c). Note the arrangements of the Cu chains along
the c direction. The various Cu–Cu interaction paths ti have been also drawn where the index
i=1, 2, 3, 7, 8 denotes the i-th nearest neighbor.
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Figure 6.3: Band structure for the relaxed Cu(II) polymer CuCCP in the GGA approximation
along the path [29] F(0, 1, 0)–Γ(0, 0, 0)–Z(0, 0, 1)–B(0.99,−0.13, 0)–Γ(0, 0, 0) in units of π/a,
π/b, π/c. The bars indicate the dominant band character in the local coordinate frame of Cu
(see text for explanation).

6.3.2 Electronic structure and effective Cu–Cu interactions:

(a) CuCCP

In Fig. 6.3 we present the band structure for the relaxed CuCCP where the Cu d band

character is shown by bars on the right side. The band characters are given in the local

coordinate frame of Cu which is defined with the local z direction pointing from the Cu

to out-of-plane N atom in the next layer and the y direction pointing from the Cu to in-

plane O atom. Cu is in a 3d9 configuration, with all d bands occupied except for the last

band which is half-filled. GGA predicts a metallic behavior for this system. As mentioned

previously, inclusion of on-site electronic correlation within LDA+U opens a gap between

a lower occupied Hubbard band and an upper unoccupied Hubbard band and the system

is described as a Mott-Hubbard insulator. Since the O-Cu-N angle in the CuO2N2 plane

is not exactly 90◦, the various Cu d degrees of freedom defined with respect to the local

coordinate frame mentioned above show slight admixtures. In particular, the Cu dx2−y2
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Path CuCCP Cu(II)-NH2 Cu(II)-CN

t1 4 9 22
t2 8 3 0
t3 79 88 68
t7 5 1 9
t8 3 8 8
t12 0 0 9

Table 6.3: Values for the Cu–Cu hopping integrals calculated with the NMTO downfolding
method for the relaxed CuCCP, Cu(II)-NH2 and Cu(II)-CN structures. The values are given
in meV. The subscripts i= 1, 2, 3, 7, 8, 12 denote the i-th nearest neighbors. See Fig. 6.2.
Only the hopping integrals having values larger than or equal to one tenth of a meV have
been shown.

dominated band crossing the Fermi level has also small contributions from Cu dyz degrees

of freedom which arise from the distorted geometry.

From the dispersion of the Cu d band at the Fermi level, we confirm the one-dimensionality

of the structure. The paths F–Γ and B–Γ which correspond to the inter-chain paths are

almost dispersionless and the intrachain Γ–Z–B path shows a cosine-like behavior. A quan-

titative analysis of the various hopping integrals obtained with the downfolding procedure,

by keeping only the Cu dx2−y2 degrees of freedom active and integrating out all the rest

within the NMTO framework, is given in the first column of Table 6.3. The various inter-

action paths are as shown in Fig. 6.2. The largest hopping integral t3 is along the chain

(see Fig. 6.2) while all other hoppings are almost an order of magnitude smaller.

(b) Cu(II)-NH2 and Cu(II)-CN

In order to have a quantitative account of the structural changes that the polymer system

undergoes under the various substitutions, we define the angle between the vector perpen-

dicular to the CuO2N2 plane and the vector perpendicular to the benzene ring as the tilting

angle ϑ. The substitution of H by NH2 groups or CN groups in the benzene rings induces a

tilting from ϑ = 34.9◦ in CuCCP to ϑ = 37.3◦ in Cu(II)-NH2 and ϑ = 36.3◦ in Cu(II)-CN.

In Figs. 6.4 (a) and (b) we present the FPLAPW orbital resolved DOS for the Cu(II)-NH2

and the Cu(II)-CN within the GGA approximation. Shown is the contribution to the total

DOS of Cu, O, N, C and the groups NH2 and CN. While some changes in the detail shape

of the DOS for Cu, O, N and C between Figs. 6.4 (a) and (b) are observed, the most

important effect is the different electronic nature of the NH2 and CN groups. Fig. 6.4 (c)

shows the contribution of these groups at the Fermi surface. The CN group bands are

deep down into the valence band while the NH2 group has appreciable contribution near
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Figure 6.4: Orbital resolved DOS for (a) Cu(II)-NH2 and (b) Cu(II)-CN. Panel (c) shows
the comparison of the contribution of the NH2 and CN groups to the DOS at EF in a blown up
scale.

the Fermi level, which indicates its involvement in the effective interaction paths between

copper atoms. We will see this more clearly in the plot of the NMTO-Wannier orbitals to

be discussed later in this section.

In Fig. 6.5 we show a comparison of the band structure for the relaxed CuCCP, Cu(II)-

NH2 and the Cu(II)-CN polymers in the energy range [−0.25 eV, 0.25 eV] where only the

Cu dx2−y2 dominated band is involved. Though the basic nature of the dispersion remains

the same upon substitution, the details however do change. NH2 seems to be the most

effective substitution to increase the intrachain Cu–Cu interaction (the bandwidth widens
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Figure 6.5: Comparison between the band structures for (from top to bottom) the relaxed
CuCCP, Cu(II)-NH2 and Cu(II)-CN respectively.

along the Γ–Z–B path for the Cu(II)-NH2 system). The CN substitution, on the other hand,

reduces this interaction (note the bandwidth narrowing along the Γ–Z–B path for the Cu(II)-

CN system). The substitution process also enhances certain interchain couplings. The

almost dispersionless behavior along F–Γ and B–Γ becomes more dispersive. Description of

such fine and subtle changes, need some quantitative measures which can be best described

by the changes in effective Cu–Cu hoppings. This is shown in Table 6.3 where the hopping

integrals obtained by the NMTO downfolding method are shown. Note that the t1 hopping

for the Cu(II)-CN system along the crystallographic a direction is enhanced by a factor of

4.5. Similarly, t7 and t8 hopping terms for the Cu(II)-CN system between neighboring Cu

chains in the b direction (see Fig. 6.2) are almost 2–3 times larger compared to that of the

CuCCP system. The long-ranged t12 hopping parameter between neighboring chains along

the a axis also attains appreciable enhancement compared to a vanishing small value for

the CuCCP system. Similarly, t1 and t8 hoppings are enhanced for the NH2 substitution

by factors of about ≈ 2–3. Among all the hoppings, only t2 shows the exception of being
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Figure 6.6: Cu Wannier functions for (a) the relaxed CuCCP polymer, (b) the Cu(II)-NH2

polymer, and (c) the Cu(II)-CN polymer. (d) indicates the atom positions common to (a)–(c).
The N–C–C–C–H chain of atoms appearing above the Wannier function belongs to the next layer.

systematically decreased upon substitution. The predominant hopping, t3 is enhanced in

the Cu(II)-NH2 system and reduced in the Cu(II)-CN system as already predicted from

bandwidth arguments.

A very helpful tool to understand the origin of these changes is the plot of effective Cu

Wannier orbitals. In Fig. 6.6 we show the Wannier orbitals for the three Cu(II) systems

presented so far. The plotted Wannier orbitals are obtained with the NMTO downfolding

technique.

The effective Cu Wannier orbital has the expected Cu dx2−y2 symmetry at the central

Cu site while the tails sitting at other sites are shaped according to the symmetries of

the various integrated out orbitals like the rest of Cu d orbitals, O p, N p or C p. Note
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Path CuCCP Cu(II)-H2O Cu(II)-NH3

t1 4 8 11
t2 8 7 5
t3 79 57 22
t7 5 1 1
t8 3 0 0
t12 0 0 0

Table 6.4: Values for the Cu–Cu hopping integrals calculated with the NMTO downfolding
method for the relaxed CuCCP, Cu(II)-H2O and Cu(II)-NH3 structures. The values are
given in meV. The subscripts i=1, 2, 3, 7, 8, 12 denote the i-th nearest neighbors. See
Fig. 6.2.

that the Cu d, O p and N p antibonding orbitals in the basic CuN2O2 square plaquette

remain similar in all three cases but the effective orbital distribution in the benzene ring

is markedly different. The changes are most prominent for the NH2 substituted case with

the tails attaining appreciable weight at the sites in the benzene ring. We also notice

the occurrence of weight at the NH2 assembly which is in accordance with the orbital

resolved DOS study (see Fig. 6.4). This leads to an enhancement in both intra- and

some interchain Cu–Cu interactions, caused by the larger overlap of the effective orbitals.

The enhancement happens via two different routes: one is due to the different tilting of

the benzene ring compared to the original compound and the other one is the opening

of additional interaction paths via the NH2 group which enhances the intrachain as well

as interchain interactions t1 and t8 as can be seen in the quantitative estimates of the

hopping interactions in Table 6.3. In the case of the CN substitution, the opening of an

additional intrachain pathway is absent, which is reflected in the reduced intrachain(t3)

hopping interaction. However the mechanism via the tilting of the benzene ring is still

operative which is reflected in the enhancement of several interchain couplings, especially

t1.

Relating the magnetic coupling interaction J with the effective hopping interaction t via

a relationship JAFM ≈ 4t2/Ueff, as discussed in Section 6.2.2, and choosing Ueff to be 5 eV4,

we obtain the nearest neighbor coupling for CuCCP system to be JAFM ≈ 58 K which is

somewhat larger than the experimental estimate [5] obtained by fitting susceptibility data to

an effective nearest neighbor Heisenberg model, but remains of the same order of magnitude.

The JAFM values estimated for Cu(II)-NH2 and Cu(II)-CN systems are JAFM ≈ 72 K and

4Note that this is a very rough Ueff estimate since we have here Cu surrounded by two O and two
N atoms and the Cu–Cu path is via a complicated organic linker. Typical values of Ueff for Cu
oxides is 4–6 eV.
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≈ 43 K respectively.

(c) Cu(II)-H2O and Cu(II)-NH3

In our second set of modifications we introduce two kinds of ligands, H2O and NH3 in the

CuCCP system in the way presented in Section 6.3.1. Our goal is to study the effect of

H2O and NH3 satellites on the CuCCP structure as well as to search for possible routes to

change the Cu coordination from planar to octahedral. As explained in Section 6.3.1, in

order to obtain realistic structures, the optimization with the force field method was done

without keeping the original cell fixed, since that would force very short intermolecular

distances between the H2O (NH3) moieties and the neighboring chains. The force field

optimized structures (see Table 6.2) and subsequently relaxed with AIMD are characterized

by Cu–O (O of the H2O molecule) distances of dCuO = 2.17 Å while the Cu–O and Cu–N

in-plane distances are dCuO = 1.99 Å and dCuN = 2.01 Å, respectively. This corresponds

to a distorted octahedron elongated along the Cu-H2O direction. For the case of the NH3

ligands the Cu–N (N of the NH3 molecule) distances are dCuN = 2.14 Å, while the Cu–O

and Cu–N in-plane distances are dCuO = 2.02 Å and dCuN = 2.03 Å, also giving rise to an

elongated octahedron along the Cu-NH3 direction. The ligands close to the Cu(II) center

also induce a tilting of the benzene rings with respect to the CuO2N2 plane. From the

initial angle of ϑ = 34.9◦ in CuCCP the tilting due to the H2O ligand is quite significant,

leading to ϑ = 42.9◦ in Cu(II)-H2O. The NH3 molecule, by contrast, leads to a lowering of

this angle to ϑ = 31.8◦ in Cu(II)-NH3.

In order to quantify the effect of the H2O and NH3 ligands on the electronic properties of

CuCCP, we show in Table 6.4 the values of the Cu–Cu hopping integrals calculated with the

NMTO downfolding method where the hopping parameters for the original CuCCP have

been included for comparison. Note that the intrachain Cu–Cu coupling is reduced by a

factor of 1.5–3.5 with the inclusion of both ligands. The reduction is especially significant

with NH3. The only Cu–Cu interchain path that is enhanced is t1 which is between Cu in

nearest neighbor chains and has its origin in the hydrogen bonds between the H of the H2O

(NH3) molecule and the O of the hydroquinone fragments in the chains. Therefore, apart

from these hydrogen bonds, the introduction of ligands isolates the Cu ions considerably.

In the Wannier orbital plot in Figs. 6.7 and 6.8, we can see that the distorted octahedral

environment of the Cu in the Cu(II)-H2O and Cu(II)-NH3 structures induces very little

mixing of the Cu dz2 orbital to the predominant dx2−y2 . Also note the little contribution of

weight in the hydroquinone ring, in contrast to the previous discussed systems (see Fig. 6.6)

which is a manifestation of the isolated nature of Cu in these structures. The inclusion of the

H2O and NH3 satellites, however, changes the Cu coordination only marginally from four in

the direction of six, as opposed to our original motivation for the addition of H2O and NH3
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Figure 6.7: Cu Wannier functions for the Cu(II)-H2O system.

ligands. Cu remains in the oxidation state of almost 2+ as observed in our calculations.

While the GGA calculations give a metallic behavior with a half-filled predominantly dx2−y2

Cu band, inclusion of correlation effects with LDA+U drive the system to an insulating

state. Therefore the system will remain an insulator.

6.4 Summary

In search of low-dimensional quantum spin systems with tunable properties, we have pro-

posed and analyzed within an ab initio framework and using a combination of different

computational methods various chemical modifications to the Cu-based polymeric coordi-

nation compound CuCCP. Our goal has been to tune in a controlled way the magnetic
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Figure 6.8: Cu Wannier functions for the Cu(II)-NH3 system.

interactions between Cu centers and to test the efficiency and feasibility of the combina-

tion of methods proposed here. We pursued two ways of modifying the original CuCCP

structure; by changing the substitution pattern in the linker (hydroquinone) and by adding

ligands to the system. Following the first scheme we considered two possible H substitutions

in the hydroquinone; an electron donating group (NH2) and an electron withdrawing group

(CN). For the second scheme, we considered structures with H2O and NH3 ligands. Out of

our study we conclude that the NH2 substitution in the hydroquinone is the most effective

in order to enhance the intrachain Cu–Cu interaction in CuCCP while the CN substitution

induces and enhances the interchain interactions in the system which were either absent

or very weak in the original CuCCP compound. In contrast, the inclusion of H2O or NH3

ligands has the effect of isolating the Cu ions.

The effects observed in this study are small, mainly due to the fact that the coupling

constants in these metalorganic materials are weak. On the other hand, these systems
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are, due to the smallness of the coupling constants, of special interest since application of

moderate magnetic fields or pressure can drive the system to a phase transition. These

systems can be described as Mott-Hubbard insulators and possibly under application of

pressure a metal-insulator transition could be induced. This will form the basis of our

future studies.

Finally, we believe that the combination of methods presented in this work is efficient for

studying the properties of complex systems per se, and that the computer-designing proce-

dure that we have employed in the present study provides a plausible route for manipulating

properties related to low-dimensional quantum spin systems in general.
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6.5 Appendix

Table 6.5: Fractional atomic coordinates of non-equivalent atoms in the CuCCP relaxed
structure. For the lattice parameters, see Table 6.2.

Atom x y z

Cu 0.5000 0.5000 0.5000
O2 0.4581 0.3495 0.6187
C3 0.4745 0.4243 0.7998
C4 0.6696 0.5869 0.9293
C5 0.0331 0.7729 0.6797
C6 0.2206 0.8455 0.8363
C7 0.1024 0.7795 0.9497
C8 0.6971 0.6615 0.1203
N9 0.8576 0.6739 0.8610
N10 0.8109 0.6692 0.6956
H11 0.1732 0.7923 0.0815
H12 0.4193 0.9317 0.8607
H13 0.0456 0.7875 0.5549
H14 0.8471 0.7919 0.2121

We present here the AIMD relaxed structural data of the various Cu(II) polymers. Other

than CuCCP, the rest are computer designed.

In Table 6.5 we show the fractional atomic positions of the CuCCP polymer obtained

after the relaxation of the system. The resulting distances between the atoms after the

optimization are closer to the standard values found in the literature [30] but differs from

the values for the distances in the experimental compound [4].

In Table 6.6 we present the relative atomic positions obtained after relaxation for Cu(II)-

CN. The cell parameters were fixed during relaxation, and the only change observed was the

tilting of the hydroquinone ring as a consequence of the movement upward of the pyrazolyl

rings.

In Table 6.7 we show the same, but for Cu(II)-NH3.

The structural data for the Cu(II)-NH2 and Cu(II)-H2O systems were already presented

in Ref. [3].
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Table 6.6: Fractional atomic positions of non-equivalent atoms in Cu(II)-CN obtained with
the PAW method. For the lattice parameters, see Table 6.2 (same as CuCCP).

Atom x y z

Cu 0.5000 0.5000 0.5000
O2 0.4559 0.3460 0.6195
C3 0.4823 0.4252 0.7998
C4 0.6795 0.5881 0.9253
C5 0.0384 0.7593 0.6620
C6 0.2349 0.8314 0.8139
C7 0.1239 0.7694 0.9310
C8 0.6944 0.6601 0.1182
C9 0.1030 0.1811 0.7598
N10 0.8687 0.6739 0.8553
N11 0.8152 0.6676 0.6880
N12 0.9162 0.0575 0.6788
H13 0.2104 0.7793 0.0570
H14 0.4353 0.9135 0.8323
H15 0.0493 0.7681 0.5346

Table 6.7: Fractional atomic positions of non-equivalent atoms in Cu(II)-NH3 obtained with
the PAW method. For the lattice parameters, see Table 6.2.

Atom x y z

Cu 0.5000 0.5000 0.5000
O2 0.4679 0.3798 0.6285
C3 0.4786 0.4444 0.8064
C4 0.6761 0.6148 0.9103
C5 0.0881 0.8540 0.6283
C6 0.2867 0.9709 0.7753
C7 0.1520 0.8949 0.9023
C8 0.6932 0.6630 0.0956
N9 0.8861 0.7410 0.8310
N10 0.8489 0.7159 0.6631
H11 0.2228 0.9402 0.0374
H12 0.4977 0.0958 0.7892
H13 0.0972 0.8601 0.4997
H14 0.8313 0.7917 0.1793
N15 0.8587 0.4701 0.3123
H16 0.7612 0.3507 0.2812
H17 0.0789 0.5407 0.3673
H18 0.9088 0.4872 0.1907
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7 Microscopic modeling of a spin

crossover transition∗

7.1 Introduction

An intensively debated class of materials with potential applications as optical switches,

sensors or memory devices [1–4], are spin-crossover polymer (SCP) systems involving tran-

sition metal ions linked with organic ligands [5]. These systems show a sharp transition

triggered by variation of temperature, pressure or by light irradiation between a low-spin

(LS) ground state and a high-spin (HS) excited state with a thermal hysteresis loop [6].

Specially important in these materials is the large cooperativity shown at the HS–LS tran-

sition in contrast to molecular spin crossover systems. The origin of this transition and

its cooperativity has been mainly discussed in the frame of elastic models [6–10], and only

recently a possible role of magnetic exchange was suggested [11, 12]. Still, a conclusive

ab initio microscopic study where all important interactions are considered is missing and

the origin of the large cooperativity has not been completely settled. It is our purpose

to investigate this issue in what follows. Ab initio theoretical studies for SCP systems

are faced with major difficulties due to the nonexistence of well-determined crystal struc-

tures. To our knowledge, electronic structure calculations have only been performed at

the level of semiempirical extended Hückel approximation for an idealized triazole-bridged

Fe(II) chain [13]. In the present work, we overcome the unavailability of structural data

by predicting a crystallographic structure for a Fe(II) spin-crossover polymeric crystal using

known experimental constraints and a combination of classical force field and quantum me-

chanical molecular dynamical methods. We analyze with Density Functional Theory (DFT)

calculations the LS–HS phase transition and show that there exists an interplay between

magnetic exchange and elastic properties that is responsible for the large cooperativity in

these systems. We also corroborate the quality of our designed structure by comparing with

magnetic experiments done on a real sample. Our methodology and results provide a new

perspective on the parameters underlying the traditional theoretical approaches.

∗This work has been published in New Journal of Physics 9, 448 (2007)
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There have been a number of attempts to theoretically account for the features of the

HS–LS transition in spin crossover materials. Most of the theoretical work is based on

elastic considerations. Two types of elastic models that focus on the faithful reproduction

of macroscopic quantities like the HS fraction, are the following: In the first approach, the

cooperativity in the HS–LS transition is defined in terms of local distortions which interact

with one another elastically causing a long range effective interaction between spin states.

This leads to an Ising-type Hamiltonian [14–16] H =
∑

i,j Jijσiσj which describes the

elastic interaction between spin states (LS and HS) in terms of fictitious spin operators (σ =

–1 (1) for LS (HS)) coupled via a nearest neighbor interaction Jij. The coupling constants

Jij are parameters of the theory and have not yet been determined from a microscopic

model. In an alternative approach, the free energy of spin crossover systems is calculated

based on an anisotropic sphere model that describes volume and shape changes of the

lattice at the transition [7–9]. One of the few attempts to include magnetic interactions is

the recent proposal done in Ref. [12] where the author considers a one-dimensional model

for HS–LS systems which contains elastic and magnetic Ising exchange interactions. The

ground-state phase diagram is then obtained by the transfer matrix technique for different

relative elastic to magnetic coupling strengths.

In the present study we concentrate on the electronic and magnetic degrees of freedom

in a spin crossover polymer, and investigate their influence on the microscopic origin of

the cooperativity in the HS–LS transition. While it has been assumed in the past that the

Fe(II) center nearest neighbor interaction is entirely of phononic origin, our study indicates

that a significant part of this interaction arises from magnetic exchange.

7.2 Crystal structure

For this investigation it is indispensable to obtain a reliable crystal structure suitable for DFT

analysis. We aim at describing the complex Fe[(hyetrz)3](4-chlorophenylsulfonate)2·3H2O [17]

(hyetrz stands for 4–(2’–hydroxyethyl)–1,2,4–triazole) (see compound 1 in Fig. 7.1),

which was synthesized from 2-hydroxyethyltriazole and iron(II)-p-chlorobenzenesulfonate

as described in [18].

This compound precipitates as a fine, polymeric powder and single crystals cannot be

grown because the polymer is insoluble in water and organic solvents [19]. Melting or sub-

limation attempts result in decomposition. Hence, X-ray structure analysis is not possible

and even the X-ray powder diagram consists of a few broad peaks only which prevent the

structure to be determined from X-ray powder data. Other polymeric Fe-triazole com-

pounds have similar properties and no single crystal structure for these systems is known.

In the literature only single crystal structures for trimeric Fe compounds (e.g. Ref. [20]),
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Figure 7.1: Chemical diagram of polymeric Fe(II)-triazole. The synthesized compound 1

differs from the model compound 2 in the simplified R and X− groups.

and polymeric Cu-triazoles [21, 22] were found. In these compounds, the metal ion is coor-

dinated by six nitrogen atoms and neighboring metal ions are connected by three pyrazole

bridges. For the polymeric Fe triazoles a similar structure is assumed, see Fig. 7.1. This

structure is also supported by spectroscopic methods [22] including solid state NMR.

In view of the above and the requirement of having reliable crystal structures for mi-

croscopic studies, we design on the computer a model system of polymeric Fe triazole,

as a basis for calculating the electronic and magnetic properties. We consider all experi-

mental information available and construct a crystal structure as close as possible to the

actual structure. We employ a method that has been developed and tested on the previ-

ous organic polymer Cu(II)-2,5-bis(pyrazole-1-yl)-1,4-dihydroxybenzene which has a simpler

structure and less atoms per unit cell than polymeric Fe-triazole [23, 24].

Since we aim at understanding the HS–LS transition with accurate all-electron DFT

calculations, which are computer intensive, we keep the essential features of the material

and simplify those elements that are secondary to the transition, like the nature of the

substituents R and X− (spin transitions are observed for a wide range of different sub-

stituents R and X−). We consider compound 2 in Fig. 7.1 with R = CH3 and X− = F−.
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This model structure has the short range environment of the Fe(II) centers exactly as in

structure 1 in Fig. 7.1, while the longer range environment (≥ 5 Å) of the Fe2+ centers is

significantly simplified. The molecular geometry of compound 2 was constructed according

to data from single crystal analysis of dimeric and trimeric Fe-triazole compounds [25]. A

hypothetical, but sensible crystal structure of compound 2 was built up with the minimum

number of atoms per unit cell (72 atoms). The iron-triazole chain itself has 63/m2/m2/c

symmetry. A crystal structure with hexagonal symmetry is in principle possible, e.g. in

space group P 63/m, but we chose a structure with P 21/m symmetry with two formula

units per unit cell. A similar arrangement of chains is also found in a corresponding Cu

polymer, [Cu(hyetrz)3](CF3SO3)2.H2O [21]. (This structure is triclinic, with space group

P1̄ and Z= 2, but the deviations from monoclinic symmetry are probably caused only by

the symmetrybreaking hydroxyethyl ligands and CF3SO3
− counterions. Otherwise the sym-

metry would be P 21/m.) In our structure, the Fe2+ ions are located on crystallographic

inversion centers, whereas all triazole units contain a crystallographic mirror plane between

the neighboring nitrogen atoms. All Fe2+ ions are crystallographically equivalent and we

enforce, for simplicity, a perfectly octahedral environment of the Fe2+ ions.

In the design and analysis of the model structures we employ four distinct classical and

ab initio methods. For preoptimization of the model structures we consider a classical

modified Dreiding force field with atomic charges calculated by the Gasteiger method as

implemented in the Cerius2 package. We then perform quantum mechanical first principles

calculations within Density Functional Theory (DFT) with three different basis sets, each

for a distinct purpose: The plane wave ab initio molecular dynamics (AIMD) method is used

for determination of precise equilibrium structures. The linearized augmented plane wave

(LAPW) method is used to determine accurate electronic and magnetic properties and the

linearized / Nth order muffin tin orbital (LMTO/NMTO) methods are used to calculate

effective Fe Wannier functions and to understand the low energy excitations of the system.

For the AIMD calculation we considered a plane wave cutoff of 30 Ryd for the plane wave

part of the wave function and we used the following sets of (s,p,d) projector functions per

angular momentum: Fe(2,2,2), F(2,2,1), N(2,2,1), C(2,2,1) and H(2,0,0). We employed a

(4 × 4 × 4) k mesh and the P21/m symmetry was preserved during the relaxation with

the help of 131 constraints.

For the LAPW calculations, we employed a (6 × 6 × 9) k mesh and a value of RMTKmax

= 4.2 that is sufficiently large due to the small radii RMT of the hydrogen atoms.

The NMTO-downfolding calculations, which rely on the self-consistent potentials derived

out of LMTO calculations, were carried out with 40 different empty spheres in addition to

atomic spheres to space fill. The convergence of LMTO calculations in each case was

cross-checked with full potential LAPW calculations.
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All DFT calculations were performed within the Generalized Gradient Approximation.

We first proceed with the relaxation of the model structure with the classical force field

within the P 1 1 21/m space group (non-standard setting of P 21/m), keeping fixed the

Fe–N distances of the FeN6 octahedra to the values dFe−N ∈ {2.00 Å, 2.05 Å, 2.08 Å,

2.09 Å, 2.10 Å, 2.12 Å, 2.15 Å, 2.20 Å}. This constraint determines the value of crystal

field splitting from the onset and constitutes our control parameter as shown below. As

the N–N bond of the triazole (see Fig. 7.1) has a well defined bond length of dN−N =

1.38 Å, the choice of a Fe–N distance leads automatically to lattice parameters linear in

dFe−N . The relative change of the lattice parameter c (the chain direction) is larger than

that for a and b. This means that the volume of the unit cell also increases linearly from V

= 6508 Å3 at dFe−N = 2.00 Å to V = 7317 Å3 at dFe−N = 2.20 Å. It should be noted that

the force field we use is not suitable for relaxing the F− anion into an equilibrium position

due to the lack of appropriate parameters for F− anions. Therefore, the F− counterion is

put into a likely position and the optimization is left to the next step where we perform a

precise relaxation of the structure with the help of ab initio molecular dynamics. This AIMD

step is essential as we find that the force field relaxed structures still show no or very bad

convergence in LAPW, indicating inappropriate positions of at least some atoms. We cross

check the final AIMD relaxed structures by calculating the LAPW forces and making sure

that they are very small. In Fig. 7.2 a representative of the resulting structures is shown.

The top panel shows the chain of FeN6 octahedra with alternating orientations, and in the

bottom panel we demonstrate the arrangement of the Fe(II) chains in the crystal.

7.3 Energy scales

At the atomic level, two sets of energy scales are responsible for the LS and HS state of

the Fe(II) centers, namely the crystal-field splitting and the Hund’s exchange and coulomb

interactions.

The crystal-field splitting, as mentioned above, is being fixed beforehand in the construc-

tion of the structures with given dFe−N distances. In Fig. 7.3 we show the dependence of

the crystal field splitting on the size of the FeN6 octahedra calculated with LAPW (magenta

symbols) and NMTO (green symbols). Note the good agreement between the two calcu-

lations. The crystal field splitting values are obtained by determining the first moment of

both t2g and eg densities of states from non-spin polarized LAPW calculations and through

construction of an Fe d only Hamiltonian in case of NMTO calculations. The atomic state

diagrams for Fe 3d schematically demonstrate the relationship between crystal field splitting

∆ and the spin state (S = 0 or S = 2). The Hunds exchange is taken into account to

some extent within the spin polarized-GGA approach.
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a bc

b a

Figure 7.2: Simplified Fe(II) triazole structure. Top: Individual chain of octahedrally coor-
dinated Fe2+ ions. Note the strong linkage between Fe(II) centers via triple N–N bridges. The
orientation of the FeN6 octahedra is alternating along the chain. Bottom: Arrangement of poly-
meric Fe(II) chains in the crystal. Red, gray, blue, cyan and green atoms stand for Fe, C, N, H
and F respectively.

In the extended system, two type of interactions contribute to the phase transition; the

phononic excitations and the exchange interaction J , due to nearest neighbor superexchange

between Fe(II) centers which is typically antiferromagnetic.

The competition between all these energy scales determines the nature of the phase

transition and its cooperativity. The role played by the phonons in driving the LS–HS

transition in the spin-crossover systems has been discussed at length in terms of elastic

models [7, 8, 10, 14, 15]. In our model calculations, the phononic degrees of freedom are
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Figure 7.3: Crystal field splitting ∆ as function of Fe–N distances. The results obtained with
LAPW (magenta) and LMTO (green) agree very well. The pink (white) background symbolizes
the respective colors of the LS (HS) compounds and indicates the ∆ value region that leads to
LS (HS). The atomic Fe 3d state diagrams visualize the relationship between crystal field splitting
and spin state.

frozen and we investigate the role of the electronic and magnetic degrees of freedom.

7.4 Electronic structure

In Fig. 7.4 we present for four of the designed structures the projection of the total density

of states (DOS) on the Fe 3d orbitals, which are responsible for the magnetism of the

material. The first and second panels correspond to the structures with dFe−N = 2.00 Å

and dFe−N = 2.08 Å respectively and show a perfect symmetry between spin up (red) and

spin down (blue) density of states and therefore define a LS state (S = 0). The occupied

states can be identified as the six t2g states, while the empty states are the four eg states.

The splitting ∆ between t2g and eg states diminishes with increasing dFe−N from ∆ =

2.66 eV to ∆ = 2.22 eV, respectively (see also Fig. 7.3). The DOS behavior completely

changes as the Fe–N distance increases to dFe−N = 2.10 Å (see the third panel of Fig. 7.4).

Now spin up (red) t2g and eg states are completely filled, and spin down (blue) t2g states

show only a partial filling with one electron. The imbalance between up and down electron

numbers is n↑ − n↓ = 4 which corresponds to the HS state (S =2). This situation remains
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Figure 7.4: Spin resolved density of states for selected Fe(II) triazole structures. Red and
blue colors denote spin up and down species, respectively. The two upper panels for low Fe–N
distances show symmetric density of states corresponding to a low spin (S = 0) state. The two
lower panels for high Fe–N distances with strong spin up spin down asymmetry correspond to a
high spin (S = 2) state.

if we further increase the Fe–N distance to dFe−N = 2.20 Å, only the splitting ∆ between

t2g and eg diminishes.

Thus, by carefully preparing a series of model structures that correspond to the LS and

HS sides of the spin crossover transition we manage to microscopically describe the LS–HS

transition which occurs between the structures with dFe−N = 2.08 Å (S = 0) and dFe−N

= 2.10 Å (S = 2).

In order to quantify energetically the HS-LS spin transition, we show in Fig. 7.5 the total

LAPW electronic energies obtained within the spin-polarized GGA (sp-GGA) approach.

We note that there is a discontinuous jump between the LS (S=0) energies and the HS

(S=2) energies. The relative electronic energy differences between the HS and LS systems
EHS

el
−ELS

el

EHS
el

is about 10−5 which agrees with the relative energy estimates for spin crossover

molecular systems [26]. Since the LS–HS phase transition occurs between structures dFe−N

= 2.08 Å and dFe−N = 2.10 Å, we designed one more structure with dFe−N = 2.09 Å

in order to probe the sharpness of the transition. While there are indications that this
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Figure 7.5: Groundstate energies for the set of model structures obtained within sp-GGA
with the LAPW basis.

structure might represent an intermediate magnetic state with S ≈ 1.5 per Fe(II) center,

we do not include it in Fig. 7.5 as it is very hard to converge. This result indicates that the

spin crossover transition in polymer systems occurs in a very narrow range of crystal field

splittings, i.e. is very sharp, as observed experimentally [5].

7.5 Exchange interaction and magnetic properties

For the magnetic behavior of this system, we derive first from the DFT electronic calcula-

tions a Hamiltonian which describes the effective interaction between Fe(II) centers. The

NMTO-based downfolding method, designed to pick up selectively the low-energy bands

from the whole group of LDA/GGA bands of a compound, has been used to construct the

Fe 3d only Hamiltonian of the Fe-triazole compounds. The tight-binding basis in which

these Hamiltonians are constructed form the set of “effective” functions, which span the

Hilbert space of the Wannier functions corresponding to the low-energy bands. Fig. 7.6

shows the plot of one member of such a set, namely the downfolded Wannier function

corresponding to Fe 3dxy. In the figure, two such Fe 3dxy Wannier functions have been

placed at two neighboring Fe sites. While the central part of such an effective function
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a

b

Figure 7.6: Wannier functions for the Fe–Fe interactions. The chosen example shows two
Wannier functions with 3dxy symmetry on two neighboring Fe(II) centers. The effective interaction
(superexchange coupling) between Fe(II) centers depends on the degree and relative sign of the
overlap of the Wannier function tails on the pyrazole ring. The color scheme of the atoms is the
same as in Fig. 7.2

has the Fe 3dxy symmetry, the tails of the function are shaped according to integrated out

degrees of freedom in the system, like C sp, N sp, F sp and H s. As is evident from the plot,

substantial weight of these tails resides on neighboring triazole rings. The presence of these

tails hints to an enhanced communication between the adjacent Fe2+ ions, contributing to

the cooperative nature of the HS–LS transition. Out of these calculations we can estimate

the various hopping matrix elements, t, between the d orbitals of adjacent Fe(II) centers.

The values of these hopping parameters range between 1 meV to 80 meV quantifying the

strength of the interaction paths between neighboring d Fe(II) orbitals.

In order to get estimates of the magnetic superexchange coupling constants J between

neighboring Fe(II) centers for the HS Fe-triazole structures, we considered two approaches:

i) Perturbation theory [27] where J can be obtained in terms of the hopping parameters

t between Fe(II) centers and the onsite Coulomb repulsion U as J ≈ 4t2/U . For the HS
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Figure 7.7: Measured susceptibility. The solid line corresponds to a high-T fit as explained
in the text. The susceptibility measured while lowering (increasing) the temperature shows a
hysteresis of 20 K at the transition temperature of 80 K.

dFe−N = 2.20 Å structure, the significant t obtained within the downfolding method is

48 meV, and for U = 4–5 eV this gives J ≈ 22 K. ii) Total energies. We calculated within

sp-GGA total energies of ferromagnetic and antiferromagnetic Fe2+ spin configurations.

Considering a spin-Hamiltonian H = JSiSi+1 between nearest neighbors Fe2+ spins Si,

the ferromagnetic and antiferromagnetic energies for two Fe2+ ions in the unit cell of the

Fe-triazole are given by EFM = 8J and EAFM = –8J . Within sp-GGA EFM − EAFM =

33 meV for the dFe−N = 2.20 Å structure and therefore J ≈ 2.1 meV = 24 K which is

very similar to the value obtained within perturbation theory.

The results of our model calculations can be now compared with the magnetic properties

obtained from the real samples of polymeric Fe[(hyetrz)3](4-chlorophenylsulfonate)2·3H2O.

Variable-temperature magnetic susceptibility measurements in the temperature range 2–

350 K and magnetic field 0.02–0.2 T were carried out on powder samples of Fe(II) triazole

using a Quantum Design SQUID magnetometer MPMS-XL. In Fig. 7.7 we show the suscep-

tibility χ measurements where χT has been plotted versus T . Our sample shows hysteresis

at T = 80 K with a width of 20 K. Since this system consists of spin S=2 Fe(II) chains with

weak interchain interactions, we have analyzed the magnetic susceptibility in the frame of

a spin S=2 Heisenberg chain model.

Note that the Fe(II) triazole SCP systems are Haldane S=2 chains. A Haldane gap
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is expected to exist between the groundstate and first excited states. The reason for not

observing this gap, is that the transition temperature at which the HS–LS transition happens

is higher in energy than the Haldane gap energy and therefore, the system goes into the

non-magnetic S=0 phase before the gap in the S=2 chain can be observed.

The susceptibility of an L-site chain is given by:

χL =
g2µ2

B

kBT

Tr

[

(
∑L

i=1 S
Z
i

)2
e−βH

]

Tr

[

e−βH

] . (7.1)

where H is the Heisenberg Hamiltonian H = JSiSi+1, J is the Heisenberg exchange

coupling constant, µB is the Bohr magneton, g is the gyromagnetic factor, kB is the

Boltzmann constant, T is temperature and spin SZ
i is the z-component of the spin on site

i. In the thermodynamic limit, the bulk susceptibility at high temperatures can be obtained

as a series expansion in 1/T :

χJ

g2µ2
B

=
1

3

[

S(S + 1)J

kBT

]

− 8

[

J

kBT

]2

+ 16

[

J

kBT

]3

+O

([

J

kBT

]4)

(7.2)

For kBT/J > S(S+1) Eq. 7.2 compares very well to QMC data for spin S = 2 chains [28].

The fit of Eq. (7.2) to the measured susceptibility of Fig. 7.7 is best for g = 2.2 and J

= 11 K.

The J values obtained from our ab initio calculations (J ≈ 24 K) are slightly larger than

the J extracted from the susceptibility data (J = 11 K) on the real sample, but remain in

the same order of magnitude. Considering that i) we performed the calculations in a model

structure and ii) the experimental measurements are affected by the quality of the samples,

we can conclude that the comparison is quite good and the designed structures are reliable.

7.6 Discussion

One of the central issues of this work is the analysis of the various energy scales that

contribute to the cooperativity of the HS–LS transition in SCP systems. In our calculations

we froze the elastic degrees of freedom and concentrated on the electronic and magnetic

properties for which we have quantified the corresponding parameters. We have theoretically

and experimentally found that the magnetic exchange coupling constants are of the same

order of magnitude as the elastic coupling constants Jij that are required in Ising-like

models proposed for the spin crossover transition [15]. In such an approach, a material

with a transition temperature of T = 80 K would be described by elastic interactions of

Jelastic ≈ 20–30 K [15]. This means that in one-dimensional Fe(II) triazole, the elastic
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coupling constants Jelastic are of equal importance as the magnetic exchange for explaining

the spin crossover transition, and the cooperativity should be understood as an interplay

between elastic properties and magnetic exchange. When we cool the system from the HS

state towards the HS–LS transition temperature, the elastic coupling tends to drive the

system to the LS state, while the magnetic exchange tends to keep up the magnetic state

for a larger temperature range (see Fig. 7.7). In comparison, in the heating process, the

magnetic exchange is initially absent (LS) and therefore the elastic interaction (vibrational

phonons) initially drives the transition which has its on-set at a higher temperature than in

the cooling process. The width of the transition between cooling and heating (hysteresis)

is therefore enhanced by the magnetic interaction.

A fundamental difference between the polymeric systems we are dealing with in this

work, and molecular bi- (tri-, tetra-, · · · ) nuclear Fe systems is the connectivity between

the Fe(II) centers. While the molecular systems [29] form isolated clusters of Fe(II) centers

and therefore there is no strong connectivity between clusters, the polymers have impor-

tant nearest neighbor interactions in the thermodynamic limit. This implies that for the

polymers, the magnetic superexchange is not restricted to the cluster as in the molecular

systems, but rather becomes important for the nature of the HS–LS phase transition. In

Ref. [30] various estimates of the magnetic J for molecular systems have been given. The

values range between 4–6 K. The values we estimated for the present polymers are larger,

between 11–24 K and in the energy range of the elastic constants, which indicates that the

cooperativity in these SCP systems is most likely significantly enhanced by the exchange

interactions.

In conclusion, this work presents an efficient route to prepare reliable model structures

for microscopic investigations and provides a new interpretation about the origin of the

parameters underlying traditional theoretical approaches for the polymeric spin-crossover

materials.
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